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Chapitre 1 Introduction
Context
Although the use of risk assessment and uncertainty analysis for decision making may take different perspectives, there is a shared and common understanding that these tools provide useful decision support, in the sense that their outcomes inform decision makers, insofar as the technical risk side of the problem is relevant for the decision [Aven, 2010b].
The actual decision outcome for a critical situation involving a potential for large consequences typically derives from a thorough process which combines:
This way of proceeding allows the technical analysis to remain manageable, while being complemented by deliberation to ensure coverage of the non-modelled issues. In this way, the analytic evaluation (i.e., the risk assessment) supports the deliberation by providing numerical outputs1 and also all the argumentations behind the analysis itself, including the assumptions, hypotheses, parameters and their uncertainties [Nilsen and Aven, 2003].
With respect to the latter issue, the key point is to guarantee that uncertainties are taken into account in each step of the risk assessment procedure in a manner which ensures that the information and knowledge relevant for the problem are represented in the most faithful manner. In particular, uncertainties have to be
The bottom line concern with respect to uncertainty in decision making is to provide the decision makers with a clearly informed picture of the problem upon which they can confidently reason and deliberate [Zio, 2009, Aven and Zio, 2011].
For more than 30 years, probabilistic analysis has been used as the basis for the analytic process of risk assessment or hazardous systems and the treatment of associated uncertainties. The common term used is Probabilistic Risk Assessment (PRA, also referred to as Quantitative Risk Assessment, QRA). Its first application to large technological systems (specifically nuclear power plants) dates back to the early 1970s [USNRC, 1975], but the basic analysis principles have not significantly changed since.
However, the purely probability-based approaches to risk and uncertainty analysis can be challenged under the common conditions of limited or poor knowledge on the high-consequence risk problem, for which the information available does not provide a strong basis for a specific probability assignment: in such a decision making context, many stakeholders may not be satisfied with a probability assessment based on subjective judgments made by a group of analysts. In this view, a broader risk description is sought where all the uncertainties are laid out ‘plain and flat’, with no additional information inserted in the analytic evaluation in the form of assumptions and hypotheses which cannot be proven right or wrong. This concern has sparked a number of investigations in the field of uncertainty representation and analysis, which has led to the developments of frameworks alternative to the probabilistic one (e.g., probability bounds analysis [Ferson and Ginzburg, 1996], imprecise probability [Walley, 1991], random sets [Dempster, 1967, Shafer, 1976] and possibility theory [Dubois and Prade, 1988, Dubois, 2006]).
Finally, decision-makers commonly seek further protection in the implementation of the decision by adding conservatisms and performing traditional engineering approaches of ‘defense-in-depth’ to bound the uncertainties and in particular the ‘unknown unknowns’ (completeness uncertainty).
Objectives of this document
In this wide framework of uncertainty identification, representation and propagation, the objective of the present document is twofold:
The technical details about risk assessment will be exposed for clarity to analyze and judge how each step is affected by uncertainty and how this impacts the communication of risk to decision makers, in the typical settings of high-consequence risk analysis of complex systems with limited knowledge on their behaviour. The driver of the critical analysis is really the decision making and the need to feed it with representative information derived from the risk assessment, to robustly support the decision.
The problem of uncertainty representation and propagation will be described in future documents in this collection.
Document structure
The remainder of the document is structured as follows:
Three annexes provide more detail on specific tools used during a probabilistic risk assessment:
Point estimates and distributions of the relevant safety parameters, possibly to be compared with predefined numerical safety criteria for further guidance to the decision.
Chapitre 2 Risk and risk analysis
2.1 From defence in depth to probabilistic risk assessment
The subject of risk nowadays plays a relevant role in the design, development, operation and management of components, systems and structures in many types of industry. In all generality, the problem of risk arises wherever there exists a potential source of damage or loss, i.e. a hazard (threat) to a “target”, such as people or the environment. Under these conditions, safeguards are typically devised to prevent the occurrence of the hazardous conditions, and protections are put in place to protect from and mitigate its associated undesired consequences. The presence of a hazard does not suffice itself to define a condition of risk; indeed, inherent in the latter there is the uncertainty that the hazard translates from potential to actual damage, bypassing safeguards and protections. In summary, the notion of risk involves some kind of loss or damage that might be received by a target and the uncertainty of its transformation into an actual loss or damage.
One classical way to defend a system against the uncertainty of its failure scenarios has been to:
Within this approach (often referred to as a structuralist defense-in-depth approach), safety margins against these scenarios are enforced through conservative regulations of system design and operation, under the creed that the identified worst-case, credible accidents would envelop all credible accidents for what regards the challenges and stresses posed on the system and its protections. The underlying principle has been that if a system is designed to withstand all the worst-case credible accidents, then it is ‘by definition’ protected against any credible accident [Apostolakis, 2006].
This approach has been the one classically chosen – and for many technologies is still the leading approach – to protect a system from the uncertainty of the unknown failure behaviors of its components, systems and structures, without directly quantifying the uncertainty, to provide reasonable assurance that the system can be operated without undue risk. However, the practice of referring to “worst” cases
Selecting the worst case scenario is a somewhat subjective process, and can lead to excessively strong safety requirements
implies strong elements of subjectivity and arbitrariness in the definition of the accidental events, which may lead to the consideration of scenarios characterized by really catastrophic consequences, although highly unlikely. This may lead to the imposition of unnecessarily stringent regulatory burdens and thus excessive conservatism in the design and operation of the system and its protective barriers, with a penalization of the industry. This is particularly so for those high-consequence industries, such as the nuclear, aerospace and process ones, in which accidents may lead to potentially large consequences.
For this reason, an alternative approach has been pushed forward for the design, regulation and management of the safety of hazardous systems. This approach, initially motivated by the growing use of nuclear energy and by the growing investments in aerospace missions in the 1960s, is based on the principle of quantifying the reliability of the accident-preventing and consequence-limiting protection systems which are designed and implemented to intervene in protection against all potential accident scenarios. This approach no longer differentiates between credible and incredible, or large and small accidents [Farmer, 1964]. Initially, a number of studies were undertaken to investigate the merits of a quantitative approach based on probability for the treatment of the uncertainty associated with the occurrence and evolution of accident scenarios [Garrick and Gekler, 1967]. The findings of these studies motivated the first complete and full-scale probabilistic risk assessment of a nuclear power installation [USNRC, 1975]. This extensive work showed that, indeed, the dominant contributors to risk need not be necessarily the design-basis accidents, a “revolutionary” discovery which undermined the fundamental creed underpinning the structuralist, defense-in-depth approach to safety [Apostolakis, 2006].
Following these lines of thought, and after several “battles” for their demonstration and valorisation, the probabilistic approach to risk analysis (PRA) has arisen as an effective technique for analysing system safety, not limited only to the consideration of worst-case accident scenarios but extended to looking at all feasible scenarios and their related consequences. The probability of occurrence of such scenarios becomes an additional key aspect to be quantified in order rationally and quantitatively to handle uncertainty [USNRC, 1975, NASA, 2002, Aven, 2003, Bedford and Cooke, 2001, Henley and Kumamoto, 1992, Kaplan and Garrick, 1981, McCormick, 1981, USNRC, 1983].
From the view point of safety regulations, this has led to the introduction of new criteria which account for both the consequences of the scenarios and their probabilities of occurrence under a now rationalist, defense-in-depth approach. Within this approach to safety analysis and regulation, reliability engineering takes on an important role in the assessment of the probability of occurrence of the accident scenarios as well as the probability of the functioning of the safety barriers implemented to hinder the occurrence of hazardous situations and mitigate their consequences if such situations should occur [Zio, 2009].
2.2 The framework of PRA
The basic analysis principles used in a PRA can be summarized as follows. A PRA systemizes the knowledge and uncertainties about the phenomena studied by addressing three fundamental questions [USNRC, 1983]:
This leads to a widely accepted, technical definition of risk in terms of a set of triplets [Kaplan and Garrick, 1981] identifying the sequences of undesirable events leading to damage (the accident scenarios), the associated probabilities and the consequences. In this view, the outcome of a risk analysis is a list of scenarios quantified in terms of probabilities and consequences, which collectively represent the risk. On the basis of this information, the designer, the operator, the manager and the regulator can act effectively so as to manage (and possibly reduce) risk (cf. figure 2.1).
Figure 2.1: The risk analysis process, which leads to a set of triplets comprising the accident scenarios Si and their estimated probability and consequences. |
In the PRA framework, the knowledge on the problem and the related uncertainties are systematically manipulated by rigorous and replicable probability-based methods to provide representative risk outcomes such as the expected number of fatalities1, the probability that a specific person shall be killed due to an accident (individual risk) and frequency-consequence (f−n) curves expressing the expected number of accidents (frequency f) with at least n fatalities.
In spite of the maturity reached by the methodologies used in PRA, a number of new and improved methods have been developed in recent years to better meet the needs of the analysis, in light of increasing system complexity and to respond to the introduction of new technological systems. Many of the methods introduced allow increased levels of detail and precision in the modelling of phenomena and processes within an integrated framework of analysis covering physical phenomena, human and organisational factors as well as software dynamics (e.g. [Mohaghegh et al., 2009]). Other methods are devoted to the improved representation and analysis of risk and related uncertainties, in view of the decision making tasks that the outcomes of the analysis are intended to support. Examples of newly introduced methods are Bayesian Belief Networks (BBNs), Binary Digit Diagrams (BDDs), multi-state reliability analysis, Petri Nets and advanced Monte Carlo simulation tools. For a summary and discussion of some of these models and techniques, see [Bedford and Cooke, 2001, Zio, 2009].
The probabilistic analysis underpinning PRA stands on two lines of thinking: the traditional frequentist approach and the Bayesian approach [Bedford and Cooke, 2001, Aven, 2003]. The frequentist approach is typically applied in the presence of a large amount of relevant data; it is founded on well-known principles of statistical inference, the use of probability models, the interpretation of probabilities as relative frequencies, point values, confidence intervals estimation and hypothesis testing.
The Bayesian approach is based on the use of subjective probabilities. It is applicable in cases where data is scarce. The steps in the Bayesian approach are:
Subjective probability
Subjective probability is a measure of a person’s degree of belief concerning the plausibility of an event. From a conceptual viewpoint, a subjective probability is commonly linked to the betting interpretation that goes back to the foundational literature on subjective probabilities (see e.g. [, Singpurwalla, 2006]). In this interpretation, one’s degree of belief in E is p if and only if p units of utility is the price at which one would buy or sell a bet that pays 1 unit of utility if E, and pays 0 if not E.
However, to avoid a mixture between uncertainty assessments and value judgments, many analysts prefer to use the comparison with a standard interpretation, for example drawing a ball from an urn [Lindley, 2000, Aven, 2003]. The term “subjective probability” is also debated, since it gives the impression that the probability and the associated assessment are non-scientific and arbitrary; it is often replaced by terms such as “judgmental probability” and “knowledge-based probability” [Singpurwalla, 2006, Aven, 2010a].
The expected number of fatalities due to the operation of a plant or equipment is the mathematical expectation of the number of fatalities per year due to accidents on the plant. Anticipated fatalities are commonly expressed in terms of indices such as PLL (Potential Loss of Lives) and FAR (Fatal Accident Rate).
Chapitre 3 Uncertainty and uncertainty analysis in risk assessment
In all generality, the quantitative analyses of the phenomena occurring in many engineering applications are based on mathematical models which are then turned into operative computer codes for simulation. A model provides a representation of a real system dependent on a number of hypotheses and parameters. The model can be deterministic (e.g. Newton’s dynamic laws or Darcy’s law for groundwater flow) or stochastic (e.g. the Poisson model for describing the occurrence of earthquake events).
In practice, the system under analysis can not be characterized exactly – the knowledge of the underlying phenomena is incomplete. This leads to uncertainty on the analysis which can be defined as a state of the analyst who cannot describe or foresee a phenomenon due to i) an intrinsic variability of the phenomenon itself or ii) lack of knowledge and information. This leads in practice to uncertainty on both the values of the model parameters and on the hypotheses supporting the model structure. Such uncertainty propagates within the model and causes variability in its outputs: for example, when many values are plausible for a model parameter, the model outputs associated to the different values of the uncertain parameter will be different; the quantification and characterization of the resulting output uncertainty is of paramount importance, and it defines the scope of the uncertainty analysis.
Uncertainty analysis
An uncertainty analysis aims at determining the uncertainty in analysis results that derives from uncertainty in analysis inputs [Helton and Oberkampf, 2004]. We may illustrate the ideas of the uncertainty analysis by introducing a model f(x), which depends on the input quantities x and on the function f; the quantity of interest x is computed by using the model y = f(x). The uncertainty analysis of y requires an assessment of the uncertainties about x and a propagation through the model f to produce an assessment of the uncertainties about y.
Typically, the uncertainty about x and the uncertainty related to the model structure f, i.e., uncertainty due to the existence of alternative plausible hypotheses on the phenomena involved, are treated separately. While the first source of uncertainty has been widely investigated and more or less sophisticated methods have been developed to deal with it, research is still ongoing to obtain effective and agreed methods to handle the uncertainty related to the model structure [USNRC, 2009]. See also [Aven, 2010b] who distinguishes between model inaccuracies (the differences between y and f(x)), and model uncertainties due to alternative plausible hypotheses on the phenomena involved.
Uncertainty is thus an unavoidable component affecting the behavior of systems and more so with respect to their limits of operation. Despite all the dedicated effort put into improving the understanding of systems, components and processes through the collection of representative data, the appropriate characterization, representation, propagation and interpretation of uncertainty remains a fundamental element of the risk analysis of any system. Following this view, uncertainty analysis is considered an integral part of PRA, although it can also exist independently in the evaluation of a model.
In what follows, the main causes (§ 3.1) and types (§ 3.2) of uncertainty are discussed within a risk assessment framework.
3.1 Causes of uncertainty
Different causes of uncertainty can be recognized in risk analysis [Armacosta and Pet-Edwards, 1999, Zimmermann, 2000]:
Another situation characterized by lack of knowledge is called approximation: it takes place when the analyst does not have enough information to describe exhaustively the phenomenon of interest or when he/she deliberately uses a lower level of detail than the one achievable. In some cases, the approximation is declared explicitly, while in other cases it is hidden.
Obviously, this cause of uncertainty can be reduced by gaining more notions, information and data about the problem at hand.
The analyst has to face this kind of uncertainty when, for example, he/she has to choose among different models for simulating a given phenomenon.
3.2 Types of uncertainty
In the context of PRA, uncertainty is conveniently distinguished into two different types: “aleatory” and “epistemic” [Apostolakis, 1990, Helton and Oberkampf, 2004, USNRC, 2009]. The former refers to phenomena occurring in a random way: probabilistic modeling offers a sound and efficient way to describe such occurrences. The latter captures the analyst’s confidence in the PRA model by quantifying the degree of belief of the analysts on how well it represents the actual system; it is also referred to as state-of-knowledge or subjective uncertainty and can be reduced by gathering information and data to improve the knowledge on the system behavior.
Aleatory uncertainties concern, for instance, the occurrence of the events that define the various possible accident scenarios, the time to failure of a component or the random variation of the actual geometrical dimensions and material properties of a component or system (due to differences between the as-built system and its design upon which the analysis is based) [USNRC, 1990, Helton, 1998, USNRC, 2002]. Two examples of classical probabilistic models used to describe this kind of uncertainties in PRAs are the Poisson model for events randomly occurring in time (e.g., random variations of the operating state of a valve) and the binomial model for events occurring “as the immediate consequence of a challenge” (for instance, failure of a safety valve when the pressure in a vessel increases rapidly1) [USNRC, 2005, Hofer et al., 2002, Krzykacz-Hausmann, 2006].
Epistemic uncertainty is associated to the lack of knowledge about the properties and conditions of the phenomena underlying the behavior of the systems. This uncertainty manifests itself in the model representation of the system behavior, in terms of both (model) uncertainty in the hypotheses assumed and (parameter) uncertainty in the (fixed but poorly known) values of the parameters of the model [Helton and Oberkampf, 2004]. Both model and parameter uncertainties associated to the current state of knowledge of the system can be represented by subjective probability distributions within a Bayesian approach to PRA [Apostolakis, 1990, Apostolakis, 1995, Apostolakis, 1999].
Whereas epistemic uncertainty can be reduced by acquiring knowledge and information on the system, aleatory uncertainty cannot be reduced in this way, and for this reason is sometimes called irreducible uncertainty.
Called failure on demand of a safety equipment.
Chapitre 4 Risk analysis: main steps and corresponding sources of uncertainty
Risk analysis comprises two parts: the first one aims at identifying malfunctioning, operative errors and external events that may cause accidents in the system/plant of interest; the second one aims at analyzing in detail the accidents that are more critical from the point of view of their frequency and/or their consequences. The final objective is to identify and quantify the impact of accidents and malfunctions (e.g., failures, operation errors, maintenance errors, external events) on the system/plant, production, assets and operators, the population and the environment. This evaluation allows to provide indications about the design of the system/plant (e.g., the installation of prevention/mitigation systems, the modification of the operation/maintenance procedures, …) in order to reduce the risk for production, assets, operators, population and environment.
Within this framework, the analytic process of risk assessment for a system is traditionally divided into five steps:
The uncertainties associated with each of these steps are described in the following sections.
4.1 STEP 1 System description and modeling
The main features of the first step of the risk assessment procedure (namely, system description and modeling) are described in § 4.1.1, whereas the corresponding sources of uncertainty are summarized in § 4.1.2.
4.1.1 Description
The construction of the model of a system requires the following steps:
4.1.2 Sources of uncertainty
The sources of uncertainty corresponding to STEP 1 of risk analysis (namely, system description and modeling) can be summarized as follows:
4.2 STEP 2 Hazard identification
The second step into the analysis of the risk of a given system is that of identifying the hazards associated to its operation.
Hazard
A hazard is any real or potential condition that may result in injury, illness, death to personnel, damage to the environment, business interruption or loss of assets. Therefore, hazards are not necessarily events, but are threats to safety, assets and production that if triggered by specific initiator events have negative effects on the exposed system, but if opportunely managed do not lead to any accident.
The aim is then that of identifying effective methods for assisting engineers in coping with the hazards, i.e. in identifying, classifying, eliminating and/or controlling them [Zio, 2007].
The methods developed for performing the hazard identification task consist, in general, in a qualitative analysis of the system and its functions, within a systematic framework of procedures. The methods strongly rely on the expertise of the designers, analysts and personnel who have designed, operated and maintained the system [Henley and Kumamoto, 1992].
The main features and steps characterizing the hazard identification procedure are described in § 4.2.1, whereas the corresponding sources of uncertainty are summarized in § 4.2.2.
4.2.1 Description
The hazard identification procedure consists of three basic steps [USDoD, 1980, USDoD, 1993, ECSS, 1999, ECSS, 2003], described in further detail below:
Historical analysis
Historical analysis is aimed at a preliminary identification of the safety problems related to a given typology of system, on the basis of past accidents happened to similar systems. This research is carried out by resorting to the available literature specialized in the field and to data bases recording accident events of interest [USDoD, 1993, NPRD, 1995].
This analysis is used to provide a preliminary, rough indication of the most important and critical components and functions of the system under analysis in order to drive the subsequent steps of functional analysis and hazard identification.
Functional analysis
The main functions performed by the system are first identified; then, each main function is decomposed in the elementary functions necessary to perform the main one, according to a hierarchical tree structure. In other words, a breakdown of the system functions is provided through different hierarchical levels of detail, i.e., functions at level n are decomposed into functions at level n+1. Further details can be found in [ECSS, 1999].
An example of this approach is reported in Table 4.1 with reference to a system for the compression and storage of hydrogen [Carpiognano et al., 2007].
Level | Function |
1. | Hydrogen production |
1.1 | Water demineralization |
1.1.1 | Storage of demineralized water |
… | |
1.2 | Hydrogen generation |
1.3 | Hydrogen purification |
… | … |
2. | Hydrogen compression |
… | … |
Tableau 4.1: Example of functional analysis based on a hierarchical tree structure, with reference to a system for the compression and storage of hydrogen [Carpiognano et al., 2007] |
Hazard identification using HAZID techniques
HAZID is a qualitative, structured and iterative methodology which combines deductive aspects (search for causes) and inductive aspects (consequence analysis) with the objective of identifying hazards in the functioning of a given system (and, as a final outcome, the initiating events of undesired accident sequences). HAZID looks at the functions which are performed in the system: indeed, the method proceeds through the compilation of tables (such as table 4.2) which highlight possible functional anomalies and their associated causes and consequences [USNRC, 1983, USDoD, 1993, ECSS, 2003, Zio, 2007].
In extreme synthesis, HAZID comprises the following steps [Henley and Kumamoto, 1992]:
Further details about the HAZID technique are reported in Appendix A.
Function | Deviation | Causes | Consequences | Hazard | F | D | R | Recommendations |
Tableau 4.2: Example of HAZID table |
Frequency | ||
F | Qualitative estimate | Description |
1 | Extremely unlikely | Not expected during the system lifetime |
2 | Remote | It should not happen during the system lifetime |
3 | Not likely | Expected at most once during the system lifetime |
4 | Likely | Expected few times during the system lifetime |
5 | Occasional | Expected many times during the system lifetime |
Damage | ||
D | Qualitative estimate | Description |
1 | Safe | No relevant damage to humans, safety functions available |
2 | Marginal | Partial damage to humans and/or partial loss of the safety functions |
3 | Severe | Serious damage to humans and/or complete loss of the safety functions |
4 | Critical | Deaths among the plant operators and/or complete loss of the safety functions |
5 | Catastrophic | High number of deaths, even among the population, and destruction of the system |
Tableau 4.3: Qualitative classifications of Frequencies (F) and Damages (D) for hazards identified through the HAZID technique |
4.2.2 Sources of uncertainty
The sources of uncertainty associated with STEP 2 of risk analysis (namely, hazard identification) are related to the possibly incomplete identification of the hazards due to:
4.3 STEP 3 Selection of Initiating Events (IEs)
After the hazards are identified, the corresponding Initiating Events (IEs) (i.e., events that unleash the potential inherent cause of the hazard and, either directly or indirectly, result in damage to the system, the plant operators, the environment or in a loss of production) are selected. Thus, the output of this task consists of a list of the IEs (component failures and defects, process deviations, external events, operator errors, etc.) which have a probability of occurrence not equal to zero and which can give rise to significant consequences. Experts’ experience, lessons learnt and collection of failure data are again the knowledge sources that feed this part of the study. Notice that a hazard could be triggered by different initiator events leading to identical or different consequences.
The identification of the accident initiators is obviously a key aspect of the overall safety analysis and great care must be put into its completeness since those accident events not included at this stage are very unlikely to enter in the analysis at a later stage [USNRC, 1983, NASA, 2002, ECSS, 2003].
The main features of this step of the risk assessment procedure are described in brief in § 4.3.1, whereas the corresponding sources of uncertainty are summarized in § 4.3.2.
4.3.1 Description
The following steps have to be undertaken [USNRC, 1983, NASA, 2002, ECSS, 2003]:
Figure 4.1: Exemplary qualitative Risk Matrix for the identification of Initiating Events (IEs) |
4.3.2 Sources of uncertainty
The sources of uncertainties corresponding to STEP 3 of risk analysis (namely, selection of the initiating events) can be summarized as follows:
4.4 STEP 4 Quantitative analysis of the accident sequences
The analysis of the accident sequences (or scenarios) represents the quantitative phase of risk assessment. In synthesis, the accident sequences deriving from each of the Initiating Events (IEs) identified in the previous STEP 3 of the procedure (§ 4.3) are determined; then, the probability (or frequencies) of occurrence of such sequences and the corresponding consequences (i.e., the associated damage) are quantified.
A few details about the methods employed for the quantitative analysis of the accident sequences are reported in § 4.4.1, whereas the corresponding sources of uncertainty are summarized in § 4.4.2.
4.4.1 Description
The quantitative analysis of accident sequences is usually performed by resorting to the Event Tree (ET) methodology.
Event tree method
Event trees are inductive logic methods for identifying the various accident sequences which can result from a single Initiating Event (IE). The approach is based on the discretization of the real accident evolution in few macroscopic events.
Once an initiating event is defined, the events delineating the accident sequences must be defined and organized according to the time and logic of occurrence. The events delineating the accident sequences are usually characterized in terms of: i) the intervention (or not) of protection systems which are supposed to take action for the mitigation of the accident; ii) the fulfillment (or not) of safety functions; iii) the occurrence or not of physical phenomena. These events are structured in the form of headings in the event tree. For each event, the set of possible states (success or failure of safety systems, occurrence or not of phenomenological events, …) must be defined and enumerated: each state gives rise to a branching of the tree.
Event tree concerning rupture of a pipe in a hydrogen storage facility
In figure 4.2, if the IE is the rupture of a pipe with release of gas in a plant for the compression and storage of hydrogen, the first function required would be that of blocking the released flow rate (event E1), followed by the possible ignition of hydrogen (event E2) and finally the quenching of the fire (event E3). By way of example, referring to figure 4.3, sequence S2 = IE, E1, E2 denotes the accident scenario in which the initiating event IE occurs, the blocking safety system is called upon and does not succeed (E1) and hydrogen ignition does not occur (E2).
Fault tree analysis
Fault tree analysis is a systematic, deductive technique which allows to develop the causal relations leading to a given undesired event. It is deductive in the sense that it starts from a defined system failure event and unfolds backward its causes down to the primary (basic) independent faults, also called Basic Events (BEs). The method focuses on a single system failure mode and can provide qualitative information on how a particular event can occur and what consequences it leads to, while at the same time allowing the identification of those components which play a major role in determining the defined system failure. Moreover it can be solved in quantitative terms to provide the probability of events of interest starting from knowledge of the probability of occurrence of the Basic Events (BEs) which cause them.
The interested reader can find further details concerning fault tree analysis in Appendix B at the end of this document.
The accident sequences which derive are then quantified in terms of their probability (or frequency) of occurrence. This requires the determination of the probability (or frequency) of occurrence of the IE and of the conditional probabilities of occurrence of the events composing the sequence. Each event (branch) in the tree can be interpreted as the top event of a fault tree which allows the evaluation of the probability of the occurrence of such event. The value thus computed represents the conditional probability of the occurrence of the event, given that the events which precede on that sequence have occurred.
Fault tree used to estimate the probability of an event in the fault tree above
Figure 4.3 shows the schematics of the event tree of figure 4.2 with an exemplary fault tree used to evaluate the probability p(E1|IE) of event E1 conditional on the occurrence of the Initiating Event (IE). Notice that probability (E1|IE) is computed as a function of the probabilities p(BE1), p(BE2) and p(BE3) of the Basic Events BE1, BE2 and BE3 which cause E1: in particular, p(E1|IE) = 1 − (1 − p(BE1)·p(BE2)·(1 − p(BE3))). The multiplication of the conditional probabilities (or frequencies) for each branch in the sequence gives the probability (or frequency) of that sequence. For example, still referring to figure 4.3, the probability p(S4) of sequence S4 = IE, E1, E2, E3 is given by
p(S4) = p(IE) · p( |
| |IE) · p(E2| |
| ) · p( |
| |E2) (4.1) |
Finally, the estimation of the consequences xSi, i ∈ {1, 2, …}, of each accident sequence requires the simulation of the physical phenomena included in the event tree branches (gas release, dispersion, ignition, fire propagation, natural circulation of fluids, heat radiation and so on) by means of properly built mathematical models that are usually translated into deterministic computer codes.
Further details about event tree and fault tree techniques are not reported here for brevity; the interested reader is referred to [Zio, 2007] and references therein and to Appendices B and C, respectively, at the end of the report.
Figure 4.2: Example of event tree in which the Initiating Event (IE) is a pipe rupture in a hydrogen compression and storage system |
Figure 4.3: Schematics of the event tree shown in figure 4.2 with an exemplary fault tree used to evaluate the probability p(E1|IE) of event E1 conditional on the occurrence of the Initiating Event. |
4.4.2 Sources of uncertainty
Uncertainty corresponding to STEP 4 of risk assessment (namely, quantitative analysis of the accident sequences) typically affects:
Uncertainties affecting the probabilities of the events included in the accident scenarios
Epistemic uncertainties typically affect the values of the probabilities and frequencies of the events included in the accident scenarios of interest: for example, failure and repair rates of mechanical components, probabilities of failure on demand of safety systems, probabilities of human errors, probabilities and frequencies of phenomenological and external events are typically affected by epistemic uncertainty due to lack of knowledge and/or data on the physical phenomena involved and/or to limited or (possibly) null operating experience of the corresponding component or system over the wide range of conditions encountered during operation2; then, the uncertainties in the probabilities of the branching events obviously propagate onto the probabilities of the accident scenarios. By way of example, referring to figures 4.2 and 4.3 of § 4.2.1, the values of probabilities p(IE), p(E1|IE), p(E3|E2), p(BE1), p(BE3), etc., and consequently p(S1), p(S2), …, p(S4) are typically affected by epistemic uncertainty.
However, it is useful to consider different practical cases that may be encountered in the tasks of estimating the probability of events included in the accident scenarios and representing the corresponding epistemic uncertainty:
Uncertainty of heat transfer coefficients
The epistemic uncertainty associated to the values of the heat transfer coefficients for fluids in natural convection is much larger than in forced convection: thus, evaluating the failure probability of a safety system relying on naturally circulating water (e.g., a passive decay heat removal system in a nuclear reactor) is more difficult than estimating the failure probability of a safety system based on mechanical pumps [Burgazzi, 2007].
Uncertainties affecting the modeling of the accident scenarios
The modeling of the accident scenarios and of the system behavior introduces an additional source of epistemic uncertainty into the analysis because it typically requires a simplification and approximation of reality. Thus, uncertainty is typically related to:
Uncertainties affecting the consequences of the accident scenarios
The estimation of the consequences of each accidental scenarios requires the simulation of the physical phenomena included in the event tree branches (e.g., gas release, dispersion, ignition, fire propagation, natural circulation of fluids, heat radiation and so on) by means of properly built mathematical models that are usually translated into deterministic computer codes. Thus, the uncertainties associated to the consequences of the accident scenarios are related to those affecting the simulation of the phenomenological events included in the event tree branches and the corresponding mathematical models and computer codes.
The classification provided here is by no means complete or even unique, but is intended only to illustrate some of the dominant sources of uncertainty in simulation models. Excepting some changes in terminology, the following classification scheme that we have adopted is consistent with that provided by [Kennedy and O’Hagan, 2001]:
Random loads on a structure
Typical examples of aleatory parametric uncertainty are represented by the random variation of the geometrical dimensions and material properties of a simulated component or system (due to differences between the as-built system and its design upon which the analysis is based) or by the random loads and resistances of structures in structural reliability simulation codes.
Power level of a nuclear reactor
Typical examples of epistemic parametric uncertainty are represented by the parameters used to describe the system (e.g., power level, pressure, temperature, material conductivity, mass flow rate, …), e.g. owing to errors in their measurement or insufficient data and information. For example, according to industry practice and experience, an error of 2% is usually considered in the determination of the power level in a nuclear reactor, due to uncertainties in the measurements. As a consequence, the power level is usually known only to a certain level of precision, i.e., epistemic parametric uncertainty is associated with it [Pagani et al., 2005].
Model uncertainty
Model uncertainty (or inadequacy) may for example involve the correlations adopted to describe Thermal-Hydraulic (T-H) phenomena, which are subject to errors of approximation. Such uncertainties may for example be captured by multiplicative (z = c(x) · ε) or additive models (z = c(x) + ε) [Zio and Apostolakis, 1996], where z is the real value of the quantity to be predicted (e.g. heat transfer coefficients, friction factors, Nusselt numbers or thermal conductivity coefficients), c(•) is the mathematical model of the correlation (i.e., the result of the correlation as computed by the T-H code), x is the vector of correlating variables and ε is the associated multiplicative or additive error factor: as a result, the uncertainty in the quantity z to be predicted is translated into an uncertainty in the multiplicative or additive error factor ε. This error is commonly classified as representing model uncertainty.
As a final remark, notice that the simulation of complex accident sequences requires the concatenation of several simulation models, each one introducing an amount of uncertainty in the analysis; thus, long and complex accident sequences may produce an “explosion” of the associated uncertainty.
4.5 STEP 5 Risk evaluation and decision making process
The main features of the last step of the risk assessment procedure (namely, risk evaluation and decision making process) are described in § 4.5.1, whereas the corresponding sources of uncertainty are summarized in § 4.5.2.
4.5.1 Description
The conclusive phase of risk analysis consists of the evaluation of the risk associated to the accident scenarios identified and quantified in the previous step (§ 4.4). In practice, the risk associated to the accident scenarios is usually classified as “acceptable” (i.e., the current system design guarantees an adequate control of risk), “almost acceptable” or “As Low As Reasonably Practicable” (ALARP) (i.e., changes to the system design and/or management are suggested) and “unacceptable” (i.e., more detailed investigations and changes to the system design and/or management are recommended).
A possible approach for classifying the accident scenarios Si, i ∈ {1, 2, …}, is represented graphically in figure 4.4, where the probabilities p(Si), i ∈ {1, 2, …} of the scenarios are plotted against their consequences xSi, i ∈ {1, 2,…}3. Then, each scenario is represented in the diagram as a point: for example, referring to figure 4.4, scenario S1 would be classified as “unacceptable”, scenario S2 as “ALARP” and scenario S3 as “acceptable”.
On the basis of this classification and visual representation, the decision maker first identifies the most effective strategy to reduce risk (e.g., prevention, i.e. reduction of the probability of the accident, or mitigation, i.e. reduction of the consequences of the accident); then, a detailed risk-informed analysis of the system leads to the choice of the practical design and/or management modifications to prevent and/or mitigate the accident.
Figure 4.4: Possible criteria for risk classification: scenario S1 is “unacceptable”, scenario S2 is “ALARP” and scenario S3 is “acceptable”. The horizontal axis is the consequence of scenarios, on a logarithmic scale. The vertical axis is the probability of the scenarios, on a log scale. |
4.5.2 Sources of uncertainty
This phase of risk quantification and evaluation is affected by all the types of uncertainties introduced in the previous phases of the analysis, which therefore impact the outputs of the risk assessment procedure.
From the modeling and methodological viewpoint, the phase of risk estimation and evaluation is affected by the lack of well-sounded and rigorous criteria for the evaluation of risk acceptability. Indeed, risk estimation is known to be affected by a number of factors:
Beyond the objective level of risk generated by a project, a number of aspects are known to influence people’s judgment as to the acceptability of an activity (cf. for instance [Sandman, 1989]):
Finally, this operation is strongly influenced by the social, economic and cultural context of a given country: thus, the level of risk acceptability associated to the operation of the same typology of system (e.g., nuclear, chemical, …) will be different in different countries. An example of this variability is shown in figure 4.5, concerning a system for the compression and storage of hydrogen.
Figure 4.5: Different criteria for classification of risk in different countries, with reference to a system for the compression and storage of hydrogen |
This is particularly relevant for systems employing new technologies.
This issue is particularly relevant for systems employing new technologies.
Consequences could be expressed for instance in terms of number of fatalities
Irrational escalation, also known as the sunk cost fallacy, is a phenomenon where people justify maintaining a decision by prior investment, despite new evidence suggesting that the cost, starting today, of continuing the decision outweighs the expected benefit.
The endowment effect, also known as status quo bias, is the observation that people often demand much more to give up an object than they would be willing to pay to acquire it.
Condorcet’s voting paradox, a situation noted by the Marquis de Condorcet in the 18th century, is a situation where collective preferences can be cyclic, even if the preferences of individual voters are not. This shows that majority voting in a group of people may fail to yield a stable outcome. The paradox was generalized by the economist Arrow, leading to Arrow’s impossibility theorem [Arrow, 1950], proving the absence of a social choice rule that respects a number of plausible requirements.
Annexe A The HAZID technique
A.1 Definitions
Hazard analysis is defined as a systematic and iterative process of the identification, classification and reduction of hazards1. Hazard Identification (HAZID) is aimed at assessing all hazards that could directly and indirectly affect the safe – correct operation of the plant – system.
A.2 Main concepts
Figures A.1 and A.2 sketch the concepts which HAZID is based on: hazards reveal themselves through hazard manifestations and are activated if initiating events occur (the combination of a hazard and an initiating event is a mishap, i.e., an unplanned event or series of events resulting in death, injury, occupational illness, or damage to or loss of equipment or property, or damage to the environment). The causes of the events that activate hazards, the sequence of the events that may occur in consequence of this activation and their effects define the Hazard Scenario (figure A.2). Notice that different hazard scenarios can originate from the same hazard and different hazard scenarios can lead to the same consequence (dashed arrows in figure A.2). The impact that the final effects have on properties and safety is evaluated and the probability of occurrence of these effects provide the basis for making the final decision about the risk acceptability.
Figure A.1: Concepts underlying HAZID |
Figure A.2: Hazards and hazard scenarios |
A HAZID study is carried out by a team of competent engineers from a mixture of disciplines, led by an analyst who is experienced in the HAZID technique. Each area, or zone, of the installation is considered against a checklist of hazards. Where it is agreed that a hazard exists in a particular area, the risk presented by the hazard is considered, and all possible means of either eliminating the hazard or controlling the risk and/or the necessity for further study are noted on a HAZID worksheet. Actions are assigned to either discipline groups or individuals to ensure the mitigating control, or further study is completed.
A.3 Essentials
A.3.1 HAZID Objectives
The HAZID method, accepted as one of the best techniques for identifying potential hazards and operability problems, involves the following:
A.3.2 Key Benefits to Client
Figure A.3: The HAZID process (cf. § 4.2.1 for definitions) |
A.3.3 Process steps
A hazard is any real or potential condition that can cause injury, illness, or death to personnel; damage to or loss of a system, equipment or property; or damage to the environment. Notice that hazards are not events, but the prerequisite for the occurrence of hazard scenarios with their negative effects on safety and properties.
Annexe B Fault-tree analysis
B.1 Introduction
For complex multi-component systems, for example such as those employed in the nuclear, chemical, process and aerospace industries, it is important to analyze the possible mechanisms of failure and to perform probabilistic analyses for the expected frequency of such failures. Often, each such system is unique in the sense that there are no other identical systems (same components interconnected in the same way and operating under the same conditions) for which failure data have been collected: therefore a statistical failure analysis is not possible. Furthermore, it is not only the probabilistic aspects of failure of the system which are of interest but also the initiating causes and the combination of events which can lead to a particular failure.
The engineering way to tackle a problem of this nature, where many events interact to produce other events, is to relate these events using simple logical relationships (intersection, union, etc.) and to methodically build a logical structure which represents the system.
In this respect, fault tree analysis is a systematic, deductive technique which allows to develop the causal relations leading to a given undesired event. It is deductive in the sense that it starts from a defined system failure event and unfolds backward its causes down to the primary (basic) independent faults. The method focuses on a single system failure mode and can provide qualitative information on how a particular event can occur and what consequences it leads to, while at the same time allowing the identification of those components which play a major role in determining the defined system failure. Moreover it can be solved in quantitative terms to provide the probability of events of interest starting from knowledge of the probability of occurrence of the basic events which cause them.
In the following, we shall give only the basic principles of the technique. The interested reader is invited to look at the specialized literature for further details, e.g. [Zio, 2007] and references therein from which the material herein contained has been taken.
B.2 Fault tree construction
A fault tree is a graphical representation of causal relations obtained when a system failure mode is traced backward to search for its possible causes. To complete the construction of a fault tree for a complex system, it is necessary to first understand how the system functions. A system flow diagram (such as a reliability block diagram) is used for this purpose, e.g. to depict the pathways by which materials are transmitted between components of the system.
The first step in fault tree construction is the selection of the system failure event of interest. This is called the top event; every following event will be considered in relation to its effect upon it.
The next step is to identify contributing events that may directly cause the top event to occur. At least four possibilities exist [Henley and Kumamoto, 1992]:
If these events are considered to be indeed contributing to the system fault, then they are connected to the top event logically via an OR function and graphically through the OR gate (cf. figure B.1).
Figure B.1: Top and first level of a fault tree for a circuit breaker (CB) failing to trip an electrical circuit, after [GE, 1974] |
Once the first level of events directly contributing to the top has been established, each event must be examined to decide whether it is to be further decomposed in more elementary events contributing to its occurrence. At this stage, the questions to be answered are:
In the first case, the corresponding branch of the tree is terminated and this primary event is symbolically represented by a circle. This also implies that the event is independent of the other terminating events (circles) which will be eventually identified and that a numerical value for the probability of its occurrence is available if a quantitative analysis of the tree is to be performed.
On the contrary, if a first level contributing event is not identified as a primary failure, it must be examined to identify the sub-events which contribute to its occurrence and their logical relationships (cf. figure B.2).
Figure B.2: AND function example for the circuit breaker of the electrical system with the top event of Figure B.1, after [GE, 1974] |
The procedure of analyzing every event is continued until all branches have been terminated in independent primary failures for which probability data are available. Sometimes, certain events which would require further breakdown can be temporarily classified as primary at the current state of the tree structure and assigned a probability by rule of thumb. These underdeveloped events are graphically represented by a diamond symbol rather than by a circle.
A fault tree can be described by a set of Boolean algebraic equations, one for each gate of the tree. For each gate, the input events are the independent variables and the output event is the dependent variable. Utilizing the rules of Boolean algebra it is then possible to solve these equations so that the top event is expressed in terms of sets of primary events only.
Finally, the quantitative analysis of the fault tree consists of transforming its logical structure into an equivalent probability form and numerically calculating the probability of occurrence of the top event from the probabilities of occurrence of the basic events. The probability of the basic event is the failure probability of the component or subsystem during the mission time of interest. The corresponding mathematical details can be found in [Zio, 2007].
Annexe C Event tree analysis
Event trees are inductive logic methods for identifying the various accident sequences which can originate from a single initiating event. The approach is based on the discretization of the real accident evolution in a small number of macroscopic events. The accident sequences derived are then quantified in terms of their probability of occurrence.
The events delineating the accident sequences are usually characterized in terms of:
Typically, the functional event trees are an intermediate step to the construction of system event trees: following the accident-initiating event, the safety functions which need to be fulfilled are identified; these will later be substituted by the corresponding safety and protection systems.
The system event trees are used to identify the accident sequences developing within the plant and involving the protection and safety systems.
The phenomenological event trees describe the accident phenomenological evolution outside the plant (fire, contaminant dispersion, …).
In the following, we shall give only the basic principles of the technique. The interested reader is invited to consult the specialized literature for further details, e.g. [Zio, 2007] and references therein from which most of the material herein has been taken.
C.1 Event tree construction
An event tree begins with a defined accident-initiating event which could be a component or an external failure. It follows that there is one event tree for each different accident-initiating event considered. This aspect obviously poses a limitation on the number of initiating events which can be analyzed in details. For this reason, the analyst groups similar initiating events and only one representative initiating event for each class is investigated in details. Initiating events which are grouped in the same class are usually such to require the intervention of the same safety functions and to lead to similar accident evolutions and consequences.
Once an initiating event is defined, all the safety functions that are required to mitigate the accident must be defined and organized according to their time of intervention. For example (cf. figure C.1) if the initiating event (IE) is the rupture of a pipe with release of flammable liquid and the sparking of jet-fire, the first function required would be that of interception of the released flow rate, followed by the cooling of adjacent tanks and finally the quenching of the jet. These functions are structured in the form of headings in the functional event tree. For each function, the set of possible success and failure states must be defined and enumerated. Each state gives rise to a branching of the tree (cf. figure C.1). For example, in the typical binary success/failure logic it is customary to associate to the top branch the success of the function and to the bottom branch its failure.
Figure C.1: Example of functional event tree, after [Zio, 2007] |
Figure C.1 shows a graphical example of a system event tree: the initiating event is depicted by the initial horizontal line and the system states are then connected in a stepwise, branching fashion: system success and failure states have been denoted by S and F, respectively. The accident sequences that result from the tree structure are shown in the last column. Each branch yields one particular accident sequence; for example, IS1F2 denotes the accident sequence in which the initiating event IE occurs, system 1 is called upon and succeeds (S1), and system 2 is called upon but fails to perform its defined function (F2). For larger event trees, this stepwise branching would simply be continued. Note that the system states on a given branch of the event tree are conditional on the previous system states having occurred. With reference to the previous example, the success and failure of system 1 must be defined under the condition that the initiating event has occurred; likewise, in the upper branch of the tree corresponding to system 1 success, the success and failure of system 2 must be defined under the conditions that the initiating event has occurred and system 1 has succeeded.
Figure C.2: Illustration of system event tree branching, after [USNRC, 1975] |
C.2 Event tree evaluation
Once the final event tree has been constructed, the final task is to compute the probabilities of system failure. Each event (branch) in the tree can be interpreted as the top event of a fault tree which allows the evaluation of the probability of the occurrence of such event. The value thus computed represents the conditional probability of the occurrence of the event, given that the events which precede on that sequence have occurred. Multiplication of the conditional probabilities for each branch in a sequence gives the probability of that sequence (cf. figure C.3).
Figure C.3: Schematics of the event tree shown with the fault trees used to evaluate the probabilities of different events |
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