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Ce document fournit une synthèse des sources d’incertitude pouvant affecter une analyse de risque
probabiliste. Pour chaque étape du processus d’analyse de risque (modélisation du système considéré,
identification des dangers, estimation de la probabilité et la gravité des conséquences de séquences
accidentelles, évaluation du risque), les auteurs décrivent et classifient les types d’incertitude
qui peuvent survenir.
Le document propose:
	
une description de la démarche d’analyse de risque, telle que mise en œuvre dans des industries
à forts potentiels de dangers, comme le nucléaire et l’extraction pétrolière et gazière;
	une classification des sources d’incertitude (épistémique et aléatoire) ainsi qu’une
description de techniques qui peuvent être employées pour modéliser ces sources d’incertitude;
	une description des différentes étapes impliquées dans une étude probabiliste des risques (ou
QRA, pour Quantitative Risk Assessment, en anglais), ainsi qu’une analyse des types
d’incertitude qui peuvent survenir à chaque étape;
	des annexes donnant une introduction à différents outils utilisés pendant les analyses
probabilistes des risques, comme le HAZID, les arbres de fautes et arbres de défaillances.


D’autres documents à venir dans cette série décriront les techniques qui peuvent être utilisées pour
représenter ces différentes formes d’incertitude, pour les propager au sein de l’analyse de risques,
et pour présenter à des décideurs des métriques de risque incluant une information sur
l’incertitude pesant sur les résultats de l’analyse.
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This document provides an overview of sources of uncertainty in probabilistic risk analysis. For
each phase of the risk analysis process (system modeling, hazard identification, estimation of the
probability and consequences of accident sequences, risk evaluation), the authors describe and
classify the types of uncertainty that can arise.
The document provides:
	
a description of the risk assessment process, as used in hazardous industries such as nuclear
power and offshore oil and gas extraction;
	a classification of sources of uncertainty (both epistemic and aleatory) and a description
of techniques for uncertainty representation;
	a description of the different steps involved in a Probabilistic Risk Assessement (PRA) or
Quantitative Risk Assessment (QRA), and an analysis of the types of uncertainty that can affect each
of these steps.
	annexes giving an overview of a number of tools used during probabilistic risk assessment,
including the HAZID technique, fault trees and event tree analysis. 


Future documents in this series will describe techniques for representing these different forms of
uncertainty (using mathematical techniques), for propagating them through the risk assessment
process, and for presenting the resulting uncertainty-enhanced risk measures to decision-makers. 
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Chapitre 1  Introduction

Context
Although the use of risk assessment and uncertainty analysis for decision making may take different
perspectives, there is a shared and common understanding that these tools provide useful
decision support, in the sense that their outcomes inform decision makers, insofar as
the technical risk side of the problem is relevant for the decision [Aven, 2010b].
The actual decision outcome for a critical situation involving a potential for large consequences
typically derives from a thorough process which combines:
	
an analytic evaluation of the situation (i.e., the risk assessment) by rigorous,
replicable methods evaluated under agreed protocols of an expert community and peer-reviewed to
verify the assumptions underpinning the analysis;
	a deliberative group exercise in which all involved stakeholders and decision makers
collectively consider the decision issues, look into the arguments for their support, scrutinize
the outcomes of the technical analysis and introduce all other values (e.g. social and political)
not explicitly included in the technical analysis.


This way of proceeding allows the technical analysis to remain manageable, while being complemented
by deliberation to ensure coverage of the non-modelled issues. In this way, the analytic evaluation
(i.e., the risk assessment) supports the deliberation by providing numerical
outputs1 and also
all the argumentations behind the analysis itself, including the assumptions, hypotheses, parameters
and their uncertainties [Nilsen and Aven, 2003].
With respect to the latter issue, the key point is to guarantee that uncertainties are taken into
account in each step of the risk assessment procedure in a manner which ensures that the
information and knowledge relevant for the problem are represented in the most faithful manner. In
particular, uncertainties have to be
	
systematically identified and classified;
	represented and described by rigorous mathematical approaches;
	propagated through the steps of the risk assessment procedure onto the risk measures until the
decisions.


The bottom line concern with respect to uncertainty in decision making is to provide the decision
makers with a clearly informed picture of the problem upon which they can confidently
reason and deliberate [Zio, 2009, Aven and Zio, 2011].
For more than 30 years, probabilistic analysis has been used as the basis for the analytic process
of risk assessment or hazardous systems and the treatment of associated uncertainties. The common
term used is Probabilistic Risk Assessment (PRA, also referred to as Quantitative Risk
Assessment, QRA). Its first application to large technological systems (specifically nuclear power
plants) dates back to the early 1970s [USNRC, 1975], but the basic analysis principles have not
significantly changed since.
However, the purely probability-based approaches to risk and uncertainty analysis can be challenged
under the common conditions of limited or poor knowledge on the high-consequence risk
problem, for which the information available does not provide a strong basis for a specific
probability assignment: in such a decision making context, many stakeholders may not be satisfied
with a probability assessment based on subjective judgments made by a group of analysts. In this
view, a broader risk description is sought where all the uncertainties are laid out ‘plain and
flat’, with no additional information inserted in the analytic evaluation in the form of assumptions
and hypotheses which cannot be proven right or wrong. This concern has sparked a number of
investigations in the field of uncertainty representation and analysis, which has led to the
developments of frameworks alternative to the probabilistic one (e.g., probability bounds analysis
[Ferson and Ginzburg, 1996], imprecise probability [Walley, 1991], random sets [Dempster, 1967, Shafer, 1976] and possibility theory [Dubois and Prade, 1988, Dubois, 2006]).



Finally, decision-makers commonly seek further protection in the implementation of the decision by
adding conservatisms and performing traditional engineering approaches of
‘defense-in-depth’ to bound the uncertainties and in particular the
‘unknown unknowns’ (completeness uncertainty).

Objectives of this document
In this wide framework of uncertainty identification, representation and propagation, the objective
of the present document is twofold:
	
analyzing and describing in detail the (traditional) steps of the risk assessment procedure;
	systematically identifying and classifying the sources of uncertainty affecting each
step of the risk assessment procedure.


The technical details about risk assessment will be exposed for clarity to analyze and judge how
each step is affected by uncertainty and how this impacts the communication of risk to decision
makers, in the typical settings of high-consequence risk analysis of complex systems with limited
knowledge on their behaviour. The driver of the critical analysis is really the decision making and
the need to feed it with representative information derived from the risk assessment, to robustly
support the decision.
The problem of uncertainty representation and propagation will be described in future documents in
this collection.

Document structure
The remainder of the document is structured as follows:
	
Chapter 2 presents the concepts of risk and risk analysis;
	In chapter 3, the problems of uncertainty and uncertainty analysis
are presented within the framework of risk assessment;
	In chapter 4, the different steps of the risk assessment procedure are
analyzed in detail and the sources of uncertainty affecting each of these steps are highlighted
and briefly described.


Three annexes provide more detail on specific tools used during a probabilistic risk assessment:
	
Annex A provides a description of the HAZID technique;
	Annex B describes the fault tree technique;
	Annex C describes the construction and evaluation of an event
tree.





	
1
	Point estimates and distributions of the relevant safety parameters, possibly to be
compared with predefined numerical safety criteria for further guidance to the decision.







Chapitre 2  Risk and risk analysis




2.1  From defence in depth to probabilistic risk assessment
The subject of risk nowadays plays a relevant role in the design, development, operation and
management of components, systems and structures in many types of industry. In all generality, the
problem of risk arises wherever there exists a potential source of damage or loss, i.e. a
hazard (threat) to a “target”, such as people or the environment. Under
these conditions, safeguards are typically devised to prevent the occurrence of the
hazardous conditions, and protections are put in place to protect from and mitigate its
associated undesired consequences. The presence of a hazard does not suffice itself to define a
condition of risk; indeed, inherent in the latter there is the uncertainty that the hazard
translates from potential to actual damage, bypassing safeguards and protections. In summary, the
notion of risk involves some kind of loss or damage that might be received by a target and the
uncertainty of its transformation into an actual loss or damage.
One classical way to defend a system against the uncertainty of its failure scenarios has been to:
	
identify the group of failure event sequences leading to credible worst-case accident
scenarios Si (design-basis accidents);
	predict their consequences xSi;
	accordingly design proper safety barriers for preventing such scenarios and for
protecting against, and mitigating, their associated consequences [Zio, 2009].


Within this approach (often referred to as a structuralist defense-in-depth approach),
safety margins against these scenarios are enforced through conservative regulations of system
design and operation, under the creed that the identified worst-case, credible
accidents would envelop all credible accidents for what regards the
challenges and stresses posed on the system and its protections. The underlying principle has been
that if a system is designed to withstand all the worst-case credible accidents, then it is ‘by
definition’ protected against any credible accident [Apostolakis, 2006].
This approach has been the one classically chosen – and for many technologies is still the leading
approach – to protect a system from the uncertainty of the unknown failure behaviors of its
components, systems and structures, without directly quantifying the uncertainty, to provide
reasonable assurance that the system can be operated without undue risk. However, the practice of
referring to “worst” cases 
Selecting the worst case scenario is a somewhat subjective
process, and can lead to excessively strong safety requirements
 implies strong elements of
subjectivity and arbitrariness in the definition of the accidental events, which may lead
to the consideration of scenarios characterized by really catastrophic consequences, although highly
unlikely. This may lead to the imposition of unnecessarily stringent regulatory burdens and thus
excessive conservatism in the design and operation of the system and its protective barriers, with a
penalization of the industry. This is particularly so for those high-consequence industries, such as
the nuclear, aerospace and process ones, in which accidents may lead to potentially large
consequences.
For this reason, an alternative approach has been pushed forward for the design, regulation and
management of the safety of hazardous systems. This approach, initially motivated by the growing use
of nuclear energy and by the growing investments in aerospace missions in the 1960s, is based on the
principle of quantifying the reliability of the accident-preventing and
consequence-limiting protection systems which are designed and implemented to intervene in
protection against all potential accident scenarios. This approach no longer differentiates between
credible and incredible, or large and small accidents [Farmer, 1964]. Initially, a number of
studies were undertaken to investigate the merits of a quantitative approach based on probability
for the treatment of the uncertainty associated with the occurrence and evolution of accident
scenarios [Garrick and Gekler, 1967]. The findings of these studies motivated the first complete and
full-scale probabilistic risk assessment of a nuclear power installation [USNRC, 1975]. This
extensive work showed that, indeed, the dominant contributors to risk need not be necessarily the
design-basis accidents, a “revolutionary” discovery which undermined the fundamental creed
underpinning the structuralist, defense-in-depth approach to safety [Apostolakis, 2006].
Following these lines of thought, and after several “battles” for their demonstration and
valorisation, the probabilistic approach to risk analysis (PRA) has arisen as an effective technique
for analysing system safety, not limited only to the consideration of worst-case accident scenarios
but extended to looking at all feasible scenarios and their related consequences. The
probability of occurrence of such scenarios becomes an additional key aspect to be quantified in
order rationally and quantitatively to handle uncertainty [USNRC, 1975, NASA, 2002, Aven, 2003, Bedford and Cooke, 2001, Henley and Kumamoto, 1992, Kaplan and Garrick, 1981, McCormick, 1981, USNRC, 1983].
From the view point of safety regulations, this has led to the introduction of new criteria which
account for both the consequences of the scenarios and their probabilities of occurrence under a now
rationalist, defense-in-depth approach. Within this approach to safety analysis and regulation,
reliability engineering takes on an important role in the
assessment of the probability of occurrence of the accident scenarios as well as the probability of
the functioning of the safety barriers implemented to hinder the occurrence of hazardous situations
and mitigate their consequences if such situations should occur [Zio, 2009].


2.2  The framework of PRA
The basic analysis principles used in a PRA can be summarized as follows. A PRA systemizes the
knowledge and uncertainties about the phenomena studied by addressing three fundamental questions
[USNRC, 1983]:
	
Which sequences of undesirable events transform the hazard into an actual damage?
	What is the probability of each of these sequences?
	What are the consequences of each of these sequences?


This leads to a widely accepted, technical definition of risk in terms of a set of triplets
[Kaplan and Garrick, 1981] identifying the sequences of undesirable events leading to damage (the
accident scenarios), the associated probabilities and the consequences. In this view, the outcome of
a risk analysis is a list of scenarios quantified in terms of probabilities and consequences, which
collectively represent the risk. On the basis of this information, the designer, the operator, the
manager and the regulator can act effectively so as to manage (and possibly reduce) risk (cf.
figure 2.1).
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	Figure 2.1: The risk analysis process, which leads to a set of triplets comprising the accident
scenarios Si and their estimated probability and consequences.










In the PRA framework, the knowledge on the problem and the related uncertainties are systematically
manipulated by rigorous and replicable probability-based methods to provide representative risk
outcomes such as the expected number of fatalities1, the probability
that a specific person shall be killed due to an accident (individual risk) and
frequency-consequence (f−n) curves expressing the expected number of accidents (frequency f)
with at least n fatalities.



In spite of the maturity reached by the methodologies used in PRA, a number of new and improved
methods have been developed in recent years to better meet the needs of the analysis, in light of
increasing system complexity and to respond to the introduction of new technological systems. Many
of the methods introduced allow increased levels of detail and precision in the modelling of
phenomena and processes within an integrated framework of analysis covering physical
phenomena, human and organisational factors as well as software dynamics (e.g.
[Mohaghegh et al., 2009]). Other methods are devoted to the improved representation and analysis of risk
and related uncertainties, in view of the decision making tasks that the outcomes of the analysis
are intended to support. Examples of newly introduced methods are Bayesian Belief Networks
(BBNs), Binary Digit Diagrams (BDDs), multi-state reliability analysis, Petri Nets and advanced
Monte Carlo simulation tools. For a summary and discussion of some of these models and
techniques, see [Bedford and Cooke, 2001, Zio, 2009].
The probabilistic analysis underpinning PRA stands on two lines of thinking: the traditional
frequentist approach and the Bayesian approach [Bedford and Cooke, 2001, Aven, 2003]. The
frequentist approach is typically applied in the presence of a large amount of relevant
data; it is founded on well-known principles of statistical inference, the use of probability
models, the interpretation of probabilities as relative frequencies, point values, confidence
intervals estimation and hypothesis testing.
The Bayesian approach is based on the use of subjective probabilities. It is
applicable in cases where data is scarce. The steps in the Bayesian approach are:
	
Establish adequate probability models representing the aleatory uncertainties, i.e.
the variabilities in the phenomena studied, such as the lifetimes of a type of unit.
	Establish probability models for the epistemic uncertainties (due to incomplete
knowledge or lack of knowledge) about the values of the parameters of the models. They are
represented by prior subjective probability distributions. When new data on the phenomena studied
become available, Bayes’ formula is used to update the representation of the epistemic
uncertainties in terms of the posterior distributions.
	The predictive distributions of the quantities of interest (the observables, for
example the lifetime of new units) are derived by applying the law of total probability.
The predictive distributions are epistemic but they also reflect the inherent variability
represented by the underlying probability models.


Subjective probability


Subjective probability is a measure of a person’s degree of belief concerning the
plausibility of an event. From a conceptual viewpoint, a subjective probability is commonly linked
to the betting interpretation that goes back to the foundational literature on subjective
probabilities (see e.g. [, Singpurwalla, 2006]). In this interpretation, one’s
degree of belief in E is p if and only if p units of utility is the price at which one would
buy or sell a bet that pays 1 unit of utility if E, and pays 0 if not E.However, to avoid a mixture between uncertainty assessments and value judgments, many analysts
prefer to use the comparison with a standard interpretation, for example drawing a ball from an
urn [Lindley, 2000, Aven, 2003]. The term “subjective probability” is also debated, since it
gives the impression that the probability and the associated assessment are non-scientific and
arbitrary; it is often replaced by terms such as “judgmental probability” and “knowledge-based
probability” [Singpurwalla, 2006, Aven, 2010a].





	
1
	The expected number of fatalities due to
the operation of a plant or equipment is the mathematical expectation of the number of fatalities
per year due to accidents on the plant. Anticipated fatalities are commonly expressed in terms of
indices such as PLL (Potential Loss of Lives) and FAR (Fatal Accident Rate).







Chapitre 3  Uncertainty and uncertainty analysis in risk assessment


In all generality, the quantitative analyses of the phenomena occurring in many engineering
applications are based on mathematical models which are then turned into operative computer codes
for simulation. A model provides a representation of a real system dependent on a number of
hypotheses and parameters. The model can be deterministic (e.g. Newton’s dynamic laws or
Darcy’s law for groundwater flow) or stochastic (e.g. the Poisson model for describing
the occurrence of earthquake events).
In practice, the system under analysis can not be characterized exactly – the knowledge of the
underlying phenomena is incomplete. This leads to uncertainty on the analysis which can be
defined as a state of the analyst who cannot describe or foresee a phenomenon due to i) an
intrinsic variability of the phenomenon itself or ii) lack of knowledge and information. This leads
in practice to uncertainty on both the values of the model parameters and on the
hypotheses supporting the model structure. Such uncertainty propagates within the model and
causes variability in its outputs: for example, when many values are plausible for a model
parameter, the model outputs associated to the different values of the uncertain parameter will be
different; the quantification and characterization of the resulting output uncertainty is of
paramount importance, and it defines the scope of the uncertainty analysis.
Uncertainty analysis


An uncertainty analysis aims at determining the uncertainty in analysis results that derives from
uncertainty in analysis inputs [Helton and Oberkampf, 2004]. We may illustrate the ideas of the
uncertainty analysis by introducing a model f(x), which depends on the input quantities x and on
the function f; the quantity of interest x is computed by using the model y = f(x). The
uncertainty analysis of y requires an assessment of the uncertainties about x and a propagation
through the model f to produce an assessment of the uncertainties about y.Typically, the uncertainty about x and the uncertainty related to the model structure f, i.e.,
uncertainty due to the existence of alternative plausible hypotheses on the phenomena involved, are
treated separately. While the first source of uncertainty has been widely investigated and more or
less sophisticated methods have been developed to deal with it, research is still ongoing to obtain
effective and agreed methods to handle the uncertainty related to the model structure
[USNRC, 2009]. See also [Aven, 2010b] who distinguishes between model inaccuracies (the
differences between y and f(x)), and model uncertainties due to alternative plausible
hypotheses on the phenomena involved.


Uncertainty is thus an unavoidable component affecting the behavior of systems and more so with
respect to their limits of operation. Despite all the dedicated effort put into improving the
understanding of systems, components and processes through the collection of representative data,
the appropriate characterization, representation, propagation and interpretation of uncertainty
remains a fundamental element of the risk analysis of any system. Following this view, uncertainty
analysis is considered an integral part of PRA, although it can also exist independently in the
evaluation of a model.
In what follows, the main causes (§ 3.1) and types (§ 3.2)
of uncertainty are discussed within a risk assessment framework.


3.1  Causes of uncertainty


Different causes of uncertainty can be recognized in risk analysis [Armacosta and Pet-Edwards, 1999, Zimmermann, 2000]:
	
Lack of information (or knowledge): Lack of information, knowledge and/or data on the
phenomena, systems and events to be analyzed is the main source of uncertainty: it can be of
quantitative (e.g., the analyst does not know the precise value of the probability of a
given event of interest) or qualitative (e.g., the analyst knows the probabilities of
the events of interest but the available information does not allow a deterministic
description of the problem to be analyzed) nature.Another situation characterized by lack of knowledge is called approximation: it takes
place when the analyst does not have enough information to describe exhaustively the phenomenon of
interest or when he/she deliberately uses a lower level of detail than the one achievable. In some
cases, the approximation is declared explicitly, while in other cases it is hidden.
Obviously, this cause of uncertainty can be reduced by gaining more notions, information and data
about the problem at hand.

	Abundance of information (or knowledge): This kind of uncertainty is due to the human
incapacity of assimilating and elaborating many pieces of data and information at the same time.
In this situation, the analyst usually focuses his attention only on those parameters and those
pieces of data and information that he/she considers more important, neglecting the others. The
identification of a rigorous (and possibly automated) procedure to select (among hundreds or
thousands) the relevant data, information and parameters for the application at hand is the most
critical issue.The analyst has to face this kind of uncertainty when, for example, he/she has to choose among
different models for simulating a given phenomenon.

	Conflicting nature of pieces of information/data: It may happen that some pieces of
available information and data suggest a given behavior of the system, while others suggest a
different one. In this case, increasing the amount of available information and data would not
decrease the uncertainty, but rather it would increase the conflict among different pieces of
information and data. This conflict can be due to the fact that i) some pieces of information are
affected by errors, but the analyst cannot identify them, ii) some of the available pieces of data
are not relevant to the problem at hand or iii) the model of the system used by the analyst is not
correct (e.g., it is characterized by bias). Again, in order to reduce this source of
uncertainty, the analyst has to make an accurate choice among the available pieces of information
and data and possibly discard some of them to reduce the conflict.
	Measurement errors: The measurement of a physical quantity (temperatures,
weights, lengths, …) is always affected by uncertainty due to i) the imprecision of the analyst
who performs the measurement or ii) the mechanical tolerance of the instrument adopted.
	Linguistic ambiguity: All languages contain words that have different meanings
depending on the context of analysis. Note that this source of uncertainty can be considered as
due to “lack of information” because providing more details about the context of analysis would
help to reduce the associated uncertainty.
	Subjectivity of analyst opinions: Uncertainty may derive from the subjective
interpretation of the available pieces of information and data by the analyst: different analysts
may provide different interpretations of the same piece of information and data depending on their
cultural background and competence in the field of analysis. This source of uncertainty can be
reduced by resorting to the elicitation of multiple opinions from different
experts.




3.2  Types of uncertainty


In the context of PRA, uncertainty is conveniently distinguished into two different types:
“aleatory” and “epistemic” [Apostolakis, 1990, Helton and Oberkampf, 2004, USNRC, 2009]. The former refers
to phenomena occurring in a random way: probabilistic modeling offers a sound and efficient way to
describe such occurrences. The latter captures the analyst’s confidence in the PRA model by
quantifying the degree of belief of the analysts on how well it represents the actual system; it is
also referred to as state-of-knowledge or subjective uncertainty and can be
reduced by gathering information and data to improve the knowledge on the system behavior.
Aleatory uncertainties concern, for instance, the occurrence
of the events that define the various possible accident scenarios, the time to failure of a
component or the random variation of the actual geometrical dimensions and material
properties of a component or system (due to differences between the as-built system and its design
upon which the analysis is based) [USNRC, 1990, Helton, 1998, USNRC, 2002]. Two examples of
classical probabilistic models used to describe this kind of uncertainties in PRAs are the Poisson
model for events randomly occurring in time (e.g., random variations of the operating state
of a valve) and the binomial model for events occurring “as the immediate consequence of a
challenge” (for instance, failure of a safety valve when the pressure in a vessel increases
rapidly1) [USNRC, 2005, Hofer et al., 2002, Krzykacz-Hausmann, 2006].





Epistemic uncertainty is associated to the lack of
knowledge about the properties and conditions of the phenomena underlying the behavior of the
systems. This uncertainty manifests itself in the model representation of the system behavior, in
terms of both (model) uncertainty in the hypotheses assumed and (parameter)
uncertainty in the (fixed but poorly known) values of the parameters of the model
[Helton and Oberkampf, 2004]. Both model and parameter uncertainties associated to the current state
of knowledge of the system can be represented by subjective probability distributions within a
Bayesian approach to PRA [Apostolakis, 1990, Apostolakis, 1995, Apostolakis, 1999].
Whereas epistemic uncertainty can be reduced by acquiring knowledge and information on the system,
aleatory uncertainty cannot be reduced in this way, and for this reason is sometimes called
irreducible uncertainty.



	
1
	Called failure on demand of a safety equipment.







Chapitre 4  Risk analysis: main steps and corresponding sources of uncertainty


Risk analysis comprises two parts: the first one aims at identifying malfunctioning, operative
errors and external events that may cause accidents in the system/plant of interest; the second one
aims at analyzing in detail the accidents that are more critical from the point of view of their
frequency and/or their consequences. The final objective is to identify and quantify the impact of
accidents and malfunctions (e.g., failures, operation errors, maintenance errors,
external events) on the system/plant, production, assets and operators, the population and the
environment. This evaluation allows to provide indications about the design of the system/plant
(e.g., the installation of prevention/mitigation systems, the modification of the
operation/maintenance procedures, …) in order to reduce the risk for production, assets,
operators, population and environment.
Within this framework, the analytic process of risk assessment for a system is traditionally divided
into five steps:
	
system description and modeling (described in § 4.1);
	identification of the hazards related to the system functioning (§ 4.2);
	selection of the events that may initiate accident sequences (or scenarios), hereafter called
Initiating (or Initiator) Events (IEs) (§ 4.3);
	quantitative analysis of the accident sequences deriving from the selected IEs (i.e.,
estimation of their probabilities/frequencies and consequences) (§ 4.4);
	evaluation of risk and decision making (or deliberative) process (i.e., identification,
planning and implementation of the most effective actions to reduce risk) (§ 4.5).


The uncertainties associated with each of these steps are described in the following sections.

4.1  STEP 1 System description and modeling


The main features of the first step of the risk assessment procedure (namely, system description and
modeling) are described in § 4.1.1, whereas the corresponding sources of
uncertainty are summarized in § 4.1.2.


4.1.1  Description


The construction of the model of a system requires the following steps:
	
comprehension of the hierarchical, logical and functional relations
linking the physical elements of the system at any level of detail (e.g., representation
of series/parallel logic relations between components, identification of the main functions
performed by single components or groups of components, construction of block diagrams, …);
	construction of a parametric model of the system, i.e., a mathematical
representation of the behavior of the system dependent on the values of both known and unknown
internal parameters;
	calibration of the mathematical model by means of data (component, software
and human failure data, maintenance record data and so on) collected (when possible) from the
real system under analysis [NPRD, 1995]. Crudely put, calibration is the activity of
adjusting the internal parameters of the models until the outputs of the model fit the available
data [Kennedy and O’Hagan, 2001].




4.1.2  Sources of uncertainty


The sources of uncertainty corresponding to STEP 1 of risk analysis (namely, system
description and modeling) can be summarized as follows:
	
models are always approximate and simplified representations of reality,
which bears a significant amount of uncertainty to the overall analysis: this type of uncertainty
is often referred to as model inadequacy
[Kennedy and O’Hagan, 2001]. In order to reduce this uncertainty, the analyst has to capture
all the important features of the system (i.e., all the hierarchical, logical
and functional relations linking the physical elements of the system at any level of detail) such
that the quality of the analysis is not jeopardized.
	the successful performance of steps i. – iii. of § 4.1.1
relies on the competence and subjective judgment of the analyst;
	the quantity and quality of the data employed in the calibration phase of step iii.
of § 4.1.1 can be low, due to:	
scarce availability, because of the possibly scarce operating experience of the
system over a wide range of conditions encountered during operation1;
	imprecision of the data/information available on the system;
	measurement errors.





4.2  STEP 2 Hazard identification


The second step into the analysis of the risk of a given system is that of identifying the hazards
associated to its operation.
Hazard


A hazard is any real or potential condition that may result in injury, illness, death to personnel,
damage to the environment, business interruption or loss of assets. Therefore, hazards are not
necessarily events, but are threats to safety, assets and production that if triggered by specific
initiator events have negative effects on the exposed system, but if opportunely managed do not lead
to any accident.

The aim is then that of identifying effective methods for assisting engineers in coping with the
hazards, i.e. in identifying, classifying, eliminating and/or controlling them [Zio, 2007].
The methods developed for performing the hazard identification task consist, in general, in a
qualitative analysis of the system and its functions, within a systematic framework of procedures.
The methods strongly rely on the expertise of the designers, analysts and personnel who have
designed, operated and maintained the system [Henley and Kumamoto, 1992].
The main features and steps characterizing the hazard identification procedure are described in
§ 4.2.1, whereas the corresponding sources of uncertainty are summarized in
§ 4.2.2.


4.2.1  Description


The hazard identification procedure consists of three basic steps [USDoD, 1980, USDoD, 1993, ECSS, 1999, ECSS, 2003], described in further detail below:
	
preliminary historical analysis of past accidents which occurred in systems similar
to that of interest;
	functional analysis aimed at highlighting those functions performed by the system at
hand that are relevant to the risk assessment task;
	hazard identification using HAZard IDentification (HAZID) techniques.




Historical analysis


Historical analysis is aimed at a preliminary identification of the safety problems related to a
given typology of system, on the basis of past accidents happened to similar systems. This research
is carried out by resorting to the available literature specialized in the field and to data bases
recording accident events of interest [USDoD, 1993, NPRD, 1995].
This analysis is used to provide a preliminary, rough indication of the most important and
critical components and functions of the system under analysis in order to drive the
subsequent steps of functional analysis and hazard identification.


Functional analysis


The main functions performed by the system are first identified; then, each main function is
decomposed in the elementary functions necessary to perform the main one, according to a
hierarchical tree structure. In other words, a breakdown of the system functions is
provided through different hierarchical levels of detail, i.e., functions at level n are
decomposed into functions at level n+1. Further details can be found in [ECSS, 1999].
An example of this approach is reported in Table 4.1 with reference to
a system for the compression and storage of hydrogen [Carpiognano et al., 2007].



	
Level	Function


	1.	Hydrogen production


	1.1	  Water demineralization


	1.1.1	    Storage of demineralized water


	…	 


	1.2	  Hydrogen generation


	1.3	  Hydrogen purification


	…	…


	2.	Hydrogen compression


	…	…




	Tableau 4.1: Example of functional analysis based on a hierarchical tree structure, with reference to a
system for the compression and storage of hydrogen [Carpiognano et al., 2007]












Hazard identification using HAZID techniques


HAZID is a qualitative, structured and iterative methodology which combines
deductive aspects (search for causes) and inductive aspects (consequence analysis)
with the objective of identifying hazards in the functioning of a given system (and, as a final
outcome, the initiating events of undesired accident sequences). HAZID looks at the functions
which are performed in the system: indeed, the method proceeds through the compilation of tables
(such as table 4.2) which highlight possible functional anomalies and
their associated causes and consequences [USNRC, 1983, USDoD, 1993, ECSS, 2003, Zio, 2007].
In extreme synthesis, HAZID comprises the following steps [Henley and Kumamoto, 1992]:
	
consider the elementary functions emerged from the functional analysis described in the
previous § 4.2.1 (i.e., those at the “lower” levels of the hierarchical tree)
and decompose the system into functionally independent units (reaction unit,
storage unit, pumping unit, etc.);
	for each elementary function (and corresponding functionally independent unit) considered in
STEP 1 above, identify the potential deviations from nominal behavior. In order to
do so, it is necessary to:
	
specify all the unit incoming and outgoing fluxes (energy, mass,
control signals, etc.) and the characteristic (corresponding) process variables
(temperature, flow rate, pressure, concentration, etc.);
	apply guide words such as “low”, “high”, “no”, “more”, “less”, “reverse” to the
previously identified process variables and unit functions, so as to generate deviations from
the nominal process regime (“high gas temperature”, “more gas flow”, “no control
signal”, “low gas pressure”, “reverse mass flow”, …);



	for each functional deviation identified at STEP 2 above, qualitatively identify its
possible causes, consequences and the associated hazard (for instance,
“more gas flow” may be due to a valve jammed open or to a pump trip and may
cause overpressure in a storage tank);
	for each functional deviation identified at STEP 2 above and the corresponding causes
and consequences identified at STEP 3 above, provide a qualitative estimate of the
associated Frequencies (F), Damages (D) and Risk (R): these qualitative estimates reflect the
analysts’ and operators’ experience, knowledge and lessons learnt. An example of the qualitative
classification of Frequencies (F) and Damages (D) for a given functional deviation of interest is
reported in Table 4.2.


Further details about the HAZID technique are reported in Appendix A.



	
Function	Deviation	Causes	Consequences	Hazard	 F	D	R	Recommendations


	 	 	 	 	 	 	 	 	 


	 	 	 	 	 	 	 	 	 




	Tableau 4.2: Example of HAZID table












	 Frequency	 	 

	
F	Qualitative estimate	Description


	1	Extremely unlikely	Not expected during the system lifetime


	2	Remote	It should not happen during the system lifetime


	3	Not likely	Expected at most once during the system lifetime


	4	Likely	Expected few times during the system lifetime


	5	Occasional	Expected many times during the system lifetime






	Damage	 	 

	
D	Qualitative estimate	Description


	1	Safe	No relevant damage to humans, safety functions available


	2	Marginal	Partial damage to humans and/or partial loss of the safety functions


	3	Severe	Serious damage to humans and/or complete loss of the safety functions


	4	Critical	Deaths among the plant operators and/or complete loss of the safety functions


	5	Catastrophic	High number of deaths, even among the population, and destruction of the system



	Tableau 4.3: Qualitative classifications of Frequencies (F) and Damages (D) for hazards identified
through the HAZID technique












4.2.2  Sources of uncertainty


The sources of uncertainty associated with STEP 2 of risk analysis (namely, hazard
identification) are related to the possibly incomplete identification of the hazards due
to:
	
historical analysis performed using data bases that are not reliable, not updated or not
specific to the typology of system of interest;
	not rigorous and systematic use of HAZID techniques, e.g. due to:
	
application limited only to portions of the system;

	coarse level of detail adopted;

	incomplete analysis of all the operative functional phases;

	superficial treatment of human and software errors;

	incomplete evaluation of external events (earthquakes, tornadoes, etc.) that may
act as initiators of accident sequences;



	imprecise definition of the qualitative classes of frequency and damage (cf.
table 4.3 for an example);
	imprecise (or even wrong) assignment of the identified functional deviations to the
corresponding qualitative classes of frequency and damage.



4.3  STEP 3 Selection of Initiating Events (IEs)


After the hazards are identified, the corresponding Initiating Events (IEs) (i.e., events that
unleash the potential inherent cause of the hazard and, either directly or indirectly, result in
damage to the system, the plant operators, the environment or in a loss of production) are selected.
Thus, the output of this task consists of a list of the IEs (component failures and defects,
process deviations, external events, operator errors, etc.) which have a probability of
occurrence not equal to zero and which can give rise to significant consequences. Experts’
experience, lessons learnt and collection of failure data are again the knowledge sources that feed
this part of the study. Notice that a hazard could be triggered by different initiator events
leading to identical or different consequences.
The identification of the accident initiators is obviously a key aspect of the overall safety
analysis and great care must be put into its completeness since those accident events not included
at this stage are very unlikely to enter in the analysis at a later stage [USNRC, 1983, NASA, 2002, ECSS, 2003].
The main features of this step of the risk assessment procedure are described in brief in
§ 4.3.1, whereas the corresponding sources of uncertainty are summarized in
§ 4.3.2.


4.3.1  Description


The following steps have to be undertaken [USNRC, 1983, NASA, 2002, ECSS, 2003]:
	
for each hazard resulting from STEP 2 (§ 4.2), identify the
corresponding Initiating Events (IEs) (i.e., those events that unleash the potential inherent
cause of the hazard and result in damage for the system, the population or the environment): IEs
should be hunted out among the possible failures and defects of components, software errors, human
errors, etc.;
	classify the criticality of the events identified in STEP 1 above on the basis
of the associated level of risk by resorting to a qualitative Risk Matrix. In particular,
the level of risk associated to an event can be classified as “acceptable” (i.e., the current
system design guarantees an adequate control of risk), “almost acceptable” or “As Low As
Reasonably Practicable” (ALARP) (i.e., changes to the system design and/or management are
suggested) and “unacceptable” (i.e., more detailed investigations and changes to the system
design and/or management are recommended). An exemplary qualitative Risk Matrix is shown in
figure 4.1;
	on the basis of the classification performed at step ii. above, select the most
critical events;
	among the most critical events, select those that have the potential for becoming initiators
of accident sequences (i.e., Initiating Events-IEs);
	group similar IEs (i.e., those requiring the intervention of the same safety functions,
involving the same area of the system, leading to similar accident evolutions and consequences, …)
into homogeneous classes;
	for each class, select one reference IE representative of all the
IEs belonging to the same class.




 [image: heveaimg/main003.png]
	Figure 4.1: Exemplary qualitative Risk Matrix for the identification of Initiating Events (IEs)












4.3.2  Sources of uncertainty


The sources of uncertainties corresponding to STEP 3 of risk analysis (namely, selection of
the initiating events) can be summarized as follows:
	
the successful performance of steps i. – vi. of § 4.3.1
relies on the competence, experience and subjective judgment of the analyst;
	some of the IEs may have been erroneously left out in STEP 1;
	the grouping of the IEs performed at step v. of § 4.3.1 may
be rough and approximate.



4.4  STEP 4 Quantitative analysis of the accident sequences


The analysis of the accident sequences (or scenarios) represents the quantitative phase of risk
assessment. In synthesis, the accident sequences deriving from each of the Initiating Events (IEs)
identified in the previous STEP 3 of the procedure (§ 4.3) are determined;
then, the probability (or frequencies) of occurrence of such sequences and the corresponding
consequences (i.e., the associated damage) are quantified.
A few details about the methods employed for the quantitative analysis of the accident sequences are
reported in § 4.4.1, whereas the corresponding sources of uncertainty are
summarized in § 4.4.2.


4.4.1  Description


The quantitative analysis of accident sequences is usually performed by resorting to the Event Tree
(ET) methodology.
Event tree method


Event trees are inductive logic methods for identifying the various accident sequences which
can result from a single Initiating Event (IE). The approach is based on the discretization of the
real accident evolution in few macroscopic events.Once an initiating event is defined, the events delineating the accident sequences must be defined
and organized according to the time and logic of occurrence. The events delineating
the accident sequences are usually characterized in terms of: i) the intervention (or not) of
protection systems which are supposed to take action for the mitigation of the accident; ii) the
fulfillment (or not) of safety functions; iii) the occurrence or not of physical phenomena. These
events are structured in the form of headings in the event tree. For each event, the set of possible
states (success or failure of safety systems, occurrence or not of phenomenological events, …) must
be defined and enumerated: each state gives rise to a branching of the tree.


Event tree concerning rupture of a pipe in a hydrogen storage facility


In figure 4.2, if the IE is the rupture of a pipe with release of gas in a plant
for the compression and storage of hydrogen, the first function required would be that of blocking
the released flow rate (event E1), followed by the possible ignition of hydrogen (event E2)
and finally the quenching of the fire (event E3). By way of example, referring to
figure 4.3, sequence S2 = IE, E1, E2 denotes the
accident scenario in which the initiating event IE occurs, the blocking safety system is
called upon and does not succeed (E1) and hydrogen ignition does not occur
(E2).

Fault tree analysis


Fault tree analysis is a systematic, deductive technique which allows to develop the
causal relations leading to a given undesired event. It is deductive in the sense that it starts
from a defined system failure event and unfolds backward its causes down to the primary (basic)
independent faults, also called Basic Events (BEs). The method focuses on a single system failure
mode and can provide qualitative information on how a particular event can occur and what
consequences it leads to, while at the same time allowing the identification of those components
which play a major role in determining the defined system failure. Moreover it can be solved in
quantitative terms to provide the probability of events of interest starting from knowledge of the
probability of occurrence of the Basic Events (BEs) which cause them.The interested reader can find further details concerning fault tree analysis in
Appendix B at the end of this document.


The accident sequences which derive are then quantified in terms of their probability (or frequency)
of occurrence. This requires the determination of the probability (or frequency) of occurrence of
the IE and of the conditional probabilities of occurrence of the events composing the
sequence. Each event (branch) in the tree can be interpreted as the top event of a fault tree which allows the evaluation of the probability of the occurrence
of such event. The value thus computed represents the conditional probability of the occurrence of
the event, given that the events which precede on that sequence have occurred.
Fault tree used to estimate the probability of an event in the fault tree above


Figure 4.3 shows the schematics of the event tree of
figure 4.2 with an exemplary fault tree used to evaluate the probability
p(E1|IE) of event E1 conditional on the occurrence of the Initiating Event (IE). Notice that
probability (E1|IE) is computed as a function of the probabilities p(BE1), p(BE2) and
p(BE3) of the Basic Events BE1, BE2 and BE3 which cause E1: in particular, p(E1|IE)
= 1 − (1 − p(BE1)·p(BE2)·(1 − p(BE3))). The multiplication of the conditional probabilities (or
frequencies) for each branch in the sequence gives the probability (or frequency) of that sequence.
For example, still referring to figure 4.3, the probability p(S4) of sequence
S4 = IE, E1, E2, E3 is given by	
p(S4) = p(IE) · p(		

	E1


	|IE) · p(E2|		

	E1


	) · p(		

	E3


	|E2)
    (4.1)



Finally, the estimation of the consequences xSi, i ∈ {1, 2, …}, of each accident
sequence requires the simulation of the physical phenomena included in the event tree branches
(gas release, dispersion, ignition, fire propagation, natural circulation of fluids, heat
radiation and so on) by means of properly built mathematical models that are usually
translated into deterministic computer codes.
Further details about event tree and fault tree techniques are not reported here for brevity; the
interested reader is referred to [Zio, 2007] and references therein and to
Appendices B and C, respectively, at the end of the
report.



[image: heveaimg/main004.png]
	Figure 4.2: Example of event tree in which the Initiating Event (IE) is a pipe rupture in a hydrogen
compression and storage system
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	Figure 4.3: Schematics of the event tree shown in figure 4.2 with an exemplary
fault tree used to evaluate the probability p(E1|IE) of event E1 conditional
on the occurrence of the Initiating Event.











4.4.2  Sources of uncertainty


Uncertainty corresponding to STEP 4 of risk assessment (namely, quantitative analysis of the
accident sequences) typically affects:
	
the values of the conditional probabilities of occurrence of the events composing the
accident scenarios;
	the modeling of the accident scenarios by means of traditional event tree and fault
tree methodologies;
	the consequences of the accident scenarios (i.e., in practice, the mathematical
models and the computer codes simulating the phenomenological events included in the accident
scenarios).




Uncertainties affecting the probabilities of the events included in the accident scenarios


Epistemic uncertainties typically affect the values of the probabilities and frequencies of the
events included in the accident scenarios of interest: for example, failure and repair rates
of mechanical components, probabilities of failure on demand of safety systems, probabilities of
human errors, probabilities and frequencies of phenomenological and external events are typically
affected by epistemic uncertainty due to lack of knowledge and/or data on the physical
phenomena involved and/or to limited or (possibly) null operating experience of the corresponding
component or system over the wide range of conditions encountered during operation2; then, the uncertainties in the
probabilities of the branching events obviously propagate onto the probabilities of the accident
scenarios. By way of example, referring to figures 4.2 and
4.3 of § 4.2.1, the values of probabilities p(IE),
p(E1|IE), p(E3|E2), p(BE1), p(BE3), etc., and consequently p(S1),
p(S2), …, p(S4) are typically affected by epistemic uncertainty.
However, it is useful to consider different practical cases that may be encountered in the tasks of
estimating the probability of events included in the accident scenarios and representing the
corresponding epistemic uncertainty:
	
in case of events dominated by hardware failures (i.e., failures of mechanical components), a
sufficient amount of (failure) data is usually available to the analysts for statistical
manipulation and estimation; this quantitative information is then frequently combined with expert
judgment to build probability distributions, within a subjective view of probability
[Huanga et al., 2001, Baraldi and Zio, 2008];
	in case of events dominated by human failures, the analyst may not have sufficiently refined
knowledge or opinion to characterize the associated relevant epistemic uncertainty in terms of
probability distributions because i) the amount of (failure) data is limited or even null, ii) the
collection and treatment of (failure) data is difficult or even impossible and/or iii) the
available information/data is often of qualitative nature (i.e., it is expressed in terms of
fuzzy linguistic rules) [Huanga et al., 2001, Baraldi and Zio, 2008]. In such cases, theories alternative to
the probabilistic one (e.g., fuzzy, evidence or possibility theories) have to be sought to
represent the corresponding epistemic uncertainty [Zadeh, 1965, Dempster, 1967, Shafer, 1976, Dubois and Prade, 1988, Dubois, 2006];
	in case of phenomenological events (gas release, dispersion, ignition, fire
propagation, natural circulation of fluids, …) and external events (earthquakes,
floods, etc.), epistemic uncertainty is due to lack of knowledge on the physical phenomena
involved and to scarce or null experience over a wide range of operative conditions (e.g.,
because they are difficult to reproduce and study through laboratory experiments). In such cases,
an estimate of the probability of the phenomenological event is usually obtained by
simulating the physical phenomena of interest by means of a mathematical model
translated into a — often, rather complex — computer code [Fong et al., 2009].Uncertainty of heat transfer coefficients


The epistemic uncertainty associated to the values of the heat transfer coefficients for fluids
in natural convection is much larger than in forced convection: thus, evaluating the failure
probability of a safety system relying on naturally circulating water (e.g., a passive decay
heat removal system in a nuclear reactor) is more difficult than estimating the failure
probability of a safety system based on mechanical pumps [Burgazzi, 2007].





Uncertainties affecting the modeling of the accident scenarios


The modeling of the accident scenarios and of the system behavior introduces an additional source of
epistemic uncertainty into the analysis because it typically requires a simplification and
approximation of reality. Thus, uncertainty is typically related to:
	
the capability of the available modeling techniques to provide an effective and realistic
representation of the behavior of the system during an accidental transient. For example, whereas
event tree and fault tree methodologies typically undertake the classical binary success/failure
logic, the performance of real systems may settle on different levels depending on the operative
conditions and on the degradation state of the constitutive multi-state components
[Zio and Podofillini, 2003]. In addition, event tree and fault tree techniques are essentially
static and cannot take into account time-dependent physical evolutions typical of real systems
[Siu, 1994];
	the heavily approximate nature of the models describing human behavior: in
particular, the difficult and incomplete identification of the possible factors influencing human
performance and of the corresponding interactions and effects, the unavoidable variability of the
behavior of different individuals in the same situations and the difficult description and
modeling of interactions/relationships in work teams [Chang and Mosleh, 2007];
	the lack of well-founded models to describe the (failure) behavior of software and digital
instrumentation and control systems [Zhu et al., 2007].




Uncertainties affecting the consequences of the accident scenarios


The estimation of the consequences of each accidental scenarios requires the simulation of
the physical phenomena included in the event tree branches (e.g., gas release, dispersion,
ignition, fire propagation, natural circulation of fluids, heat radiation and so on) by means of
properly built mathematical models that are usually translated into deterministic
computer codes. Thus, the uncertainties associated to the consequences of the accident
scenarios are related to those affecting the simulation of the phenomenological events included in
the event tree branches and the corresponding mathematical models and computer codes.
The classification provided here is by no means complete or even unique, but is intended only to
illustrate some of the dominant sources of uncertainty in simulation models. Excepting some changes
in terminology, the following classification scheme that we have adopted is consistent with that
provided by [Kennedy and O’Hagan, 2001]:
	
Aleatory parametric uncertainty: Because models are idealizations of some real
phenomena, they frequently allow for greater control over the input parameter values than can
actually be realized. However, it may not be possible to specify, or control, the values of some
of these inputs in the real system. Moreover, the system may interact with its environment in a
complicated and dynamic manner so that some of the inputs are effectively random. The
distinguishing feature of these parameters is that their values could conceivably change each time
the code is run. For instance, if the computational model must repeatedly call a subroutine that
contains an aleatory variable, a new value must be randomly selected from its distribution for
each call to this subroutine. Consequently, repeated runs of the code under identical input
configurations will lead to different outputs, and the output of the code will be a random
variable [Langewisch, 2010].Random loads on a structure


Typical examples of aleatory parametric uncertainty are represented by the random variation of the
geometrical dimensions and material properties of a simulated component or system (due to
differences between the as-built system and its design upon which the analysis is based) or by the
random loads and resistances of structures in structural reliability simulation codes.


	Epistemic parametric uncertainty: Not all the inputs to the model will be random in
the sense described above. Nevertheless, when attempting to simulate some phenomena, it is
necessary to specify these remaining parameters in a manner that is consistent with the actual
system being simulated. In practice, however, the appropriate values of many of these parameters
may not be precisely known due to a lack of data concerning the phenomena under consideration. As
described previously, this type of uncertainty is one instance of epistemic uncertainty. More
specifically, we refer to this uncertainty as epistemic parametric uncertainty. Epistemic
parametric uncertainty is distinguished from aleatory parametric variability in that, in the case
of the former, the input parameter takes some fixed, albeit unknown, value. Thus, the value does
not change each time the model is run.Power level of a nuclear reactor


Typical examples of epistemic parametric uncertainty are represented by the parameters used to
describe the system (e.g., power level, pressure, temperature, material conductivity, mass flow
rate, …), e.g. owing to errors in their measurement or insufficient data and information. For
example, according to industry practice and experience, an error of 2% is usually considered in
the determination of the power level in a nuclear reactor, due to uncertainties in the
measurements. As a consequence, the power level is usually known only to a certain level of
precision, i.e., epistemic parametric uncertainty is associated with it [Pagani et al., 2005].


	Epistemic model uncertainty (or model inadequacy): this form of uncertainty arises
because mathematical models are simplified representations of real systems and, therefore, their
results may be affected by error or bias. Model uncertainty (or inadequacy) also includes the fact
that the model could be too simplified and therefore would neglect some important phenomena
affecting the final result: this latter type of uncertainty is sometimes identified independently
from model uncertainty and is known as completeness uncertainty [USNRC, 2009]. In
practice, even if there was no (aleatory or epistemic) parameter uncertainty (so that we knew the
true values of the parameters and variables required to make a particular estimate of the
state of the system being modeled), the estimated value would not equal the true
value of the system state: this discrepancy is due to model inadequacy.Model uncertainty


Model uncertainty (or inadequacy) may for example involve the correlations adopted to describe
Thermal-Hydraulic (T-H) phenomena, which are subject to errors of approximation. Such
uncertainties may for example be captured by multiplicative (z = c(x) · ε) or
additive models (z = c(x) + ε) [Zio and Apostolakis, 1996], where z is the real value
of the quantity to be predicted (e.g. heat transfer coefficients, friction factors, Nusselt
numbers or thermal conductivity coefficients), c(•) is the mathematical model of the correlation
(i.e., the result of the correlation as computed by the T-H code), x is the vector of
correlating variables and ε is the associated multiplicative or additive error factor:
as a result, the uncertainty in the quantity z to be predicted is translated into an uncertainty
in the multiplicative or additive error factor ε. This error is commonly classified as
representing model uncertainty.

As a final remark, notice that the simulation of complex accident sequences requires the
concatenation of several simulation models, each one introducing an amount of uncertainty in the
analysis; thus, long and complex accident sequences may produce an “explosion” of the associated
uncertainty.




4.5  STEP 5 Risk evaluation and decision making process


The main features of the last step of the risk assessment procedure (namely, risk evaluation and
decision making process) are described in § 4.5.1, whereas the corresponding
sources of uncertainty are summarized in § 4.5.2.


4.5.1  Description


The conclusive phase of risk analysis consists of the evaluation of the risk associated to
the accident scenarios identified and quantified in the previous step (§ 4.4).
In practice, the risk associated to the accident scenarios is usually classified as “acceptable”
(i.e., the current system design guarantees an adequate control of risk), “almost acceptable” or
“As Low As Reasonably Practicable” (ALARP) (i.e., changes to the system design and/or management
are suggested) and “unacceptable” (i.e., more detailed investigations and changes to the system
design and/or management are recommended).
A possible approach for classifying the accident scenarios Si, i ∈ {1, 2, …}, is represented
graphically in figure 4.4, where the probabilities p(Si), i ∈ {1, 2, …} of
the scenarios are plotted against their consequences xSi, i ∈ {1, 2,…}3. Then, each scenario is
represented in the diagram as a point: for example, referring to figure 4.4,
scenario S1 would be classified as “unacceptable”, scenario S2 as “ALARP” and scenario S3
as “acceptable”.
On the basis of this classification and visual representation, the decision maker first identifies
the most effective strategy to reduce risk (e.g., prevention, i.e. reduction of the
probability of the accident, or mitigation, i.e. reduction of the consequences of the
accident); then, a detailed risk-informed analysis of the system leads to the choice of the
practical design and/or management modifications to prevent and/or mitigate the accident.


[image: heveaimg/main006.png]
	Figure 4.4: Possible criteria for risk classification: scenario S1 is “unacceptable”, scenario
S2 is “ALARP” and scenario S3 is “acceptable”. The horizontal axis is the consequence of
scenarios, on a logarithmic scale. The vertical axis is the probability of the scenarios, on a
log scale.












4.5.2  Sources of uncertainty


This phase of risk quantification and evaluation is affected by all the types of uncertainties
introduced in the previous phases of the analysis, which therefore impact the outputs of the risk
assessment procedure.
From the modeling and methodological viewpoint, the phase of risk estimation and evaluation is
affected by the lack of well-sounded and rigorous criteria for the evaluation of risk acceptability. Indeed, risk estimation is known to be affected by a
number of factors:
	
heuristics used by people when dealing with complex, probabilistic problems (also known as
cognitive biases) which affect risk perception [Kahneman et al., 1982]), such as:	
the availability heuristic (the probability of an event is estimated by the ease
with which examples of the event come to mind), which studies have for instance shown leads to
underestimation of the frequency of common causes of death [Lichtenstein et al., 1978];
	anchoring and adjustment effects, which lead people to place too much importance on
the first information one obtained on a subject (the “anchor”), operating by incremental
adjustments with respect to that anchor instead of weighting new evidence in the same way as the
initial estimate;
	overconfidence or optimism bias, which is a tendency for people to be overly
optimistic about the outcome of planned actions (including overestimating the probability of
positive events and underestimating that of negative events) [Oskamp, 1965];
	illusion of control, the tendency for people to overestimate their ability to control events
[Langer, 1975].



	heuristics used in individual decision-making under risk and uncertainty, such as irrational
escalation4, loss aversion, and endowment effects5;
	group decision biases, such as conformity and group polarization (the tendency for
people in group situations to form opinions and reach decisions which are more extreme, or more
risky, than when they decide alone), groupthink [Janis, 1982] and possibly cyclic
preferences in group decisions6.


Beyond the objective level of risk generated by a project, a number of aspects are known to
influence people’s judgment as to the acceptability of an activity (cf. for instance
[Sandman, 1989]):
	
is the origin of the risk natural or industrial/technological?

	is the nature of the hazard familiar to people, or unfamiliar?

	are the possible effects memorable or easily forgotten, dreaded or not?

	is the hazard of a catastrophic or a chronic nature?

	is exposure to the risk perceived to be fair, or unfair (issues related to equity)?

	is the activity perceived to be morally relevant?

	are sources of information concerning the risk and the activity perceived to be trustworthy?

	is the governance of the industrial activity and the risk management process perceived to be
open and responsive? 







Finally, this operation is strongly influenced by the social, economic and cultural context of a
given country: thus, the level of risk acceptability associated to the operation of the same
typology of system (e.g., nuclear, chemical, …) will be different in different countries. An
example of this variability is shown in figure 4.5, concerning a system for
the compression and storage of hydrogen.


[image: heveaimg/main007.png]
	Figure 4.5: Different criteria for classification of risk in different countries, with reference to a
system for the compression and storage of hydrogen













	
1
	This is particularly
relevant for systems employing new technologies.


	2
	This issue is
particularly relevant for systems employing new technologies.


	3
	Consequences
could be expressed for instance in terms of number of fatalities


	4
	Irrational escalation, also known as the sunk cost fallacy, is a
phenomenon where people justify maintaining a decision by prior investment, despite new evidence
suggesting that the cost, starting today, of continuing the decision outweighs the expected
benefit.


	5
	The endowment effect, also known as
status quo bias, is the observation that people often demand much more to give up an
object than they would be willing to pay to acquire it.


	6
	Condorcet’s voting paradox, a situation noted by the
Marquis de Condorcet in the 18th century, is a situation where collective preferences
can be cyclic, even if the preferences of individual voters are not. This shows that majority
voting in a group of people may fail to yield a stable outcome. The paradox was generalized by
the economist Arrow, leading to Arrow’s impossibility theorem [Arrow, 1950], proving the
absence of a social choice rule that respects a number of plausible requirements.







Annexe A  The HAZID technique




A.1  Definitions
Hazard analysis is defined as a systematic and iterative process of the identification,
classification and reduction of hazards1.
Hazard Identification (HAZID) is aimed at assessing all hazards that could directly and indirectly
affect the safe – correct operation of the plant – system.


A.2  Main concepts
Figures A.1 and A.2 sketch the concepts which HAZID is
based on: hazards reveal themselves through hazard manifestations and are activated if initiating
events occur (the combination of a hazard and an initiating event is a mishap, i.e., an
unplanned event or series of events resulting in death, injury, occupational illness, or damage to
or loss of equipment or property, or damage to the environment). The causes of the events that
activate hazards, the sequence of the events that may occur in consequence of this activation and
their effects define the Hazard Scenario (figure A.2). Notice that different
hazard scenarios can originate from the same hazard and different hazard scenarios can lead to the
same consequence (dashed arrows in figure A.2). The impact that the final
effects have on properties and safety is evaluated and the probability of occurrence of these
effects provide the basis for making the final decision about the risk acceptability.
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	Figure A.1: Concepts underlying HAZID
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	Figure A.2: Hazards and hazard scenarios









A HAZID study is carried out by a team of competent engineers from a mixture of disciplines, led by
an analyst who is experienced in the HAZID technique. Each area, or zone, of the installation is
considered against a checklist of hazards. Where it is agreed that a hazard exists in a
particular area, the risk presented by the hazard is considered, and all possible means of either
eliminating the hazard or controlling the risk and/or the necessity for further study are noted on a
HAZID worksheet. Actions are assigned to either discipline groups or individuals to ensure the
mitigating control, or further study is completed.


A.3  Essentials


A.3.1  HAZID Objectives
	
Identify hazards to host facilities due to design, and evaluate potential consequences should the
hazards be realized;
	Establish safeguards to manage hazards; identify areas where further understanding of
safeguard effectiveness is needed;
	Make recommendations to reduce the likelihood of hazard occurrence or mitigate the potential
consequences.


The HAZID method, accepted as one of the best techniques for identifying potential hazards and
operability problems, involves the following:
	
Assembly of a team of experienced project personnel;

	Presentations detailing the scope of the HAZID;

	Identify hazards, causes, consequences and safeguards. Notice that the main “sources” used for this task are:
	
analysis of similar systems;

	preliminary Hazard Lists (provided by reference standards);

	expert knowledge;

	lessons learnt;

	analysis of environmental constraints, including the operating environment (drop,
shock, vibration, extreme temperature, noise, confined space, fire, electrostatic discharge,
lightning, etc.);
	analysis of operating test, maintenance, and emergency procedures.




	Make recommendations to address hazards, as appropriate;

	Risk ranking of hazardous events.




A.3.2  Key Benefits to Client
	
Existing design knowledge is efficiently captured relative to client’s projects;
	Numerous procedural, equipment design, testing, and process control recommendations allow
expedited development of standardized equipment.




 [image: heveaimg/main010.png]
	Figure A.3: The HAZID process (cf. § 4.2.1 for definitions)












A.3.3  Process steps
	
Define the purpose, objectives, and scope of the study;

	Select the team;

	Prepare for the study;

	Carry out the team review;

	Record the results.





	
1
	A hazard is any real or potential condition that
can cause injury, illness, or death to personnel; damage to or loss of a system, equipment or
property; or damage to the environment. Notice that hazards are not events, but the prerequisite
for the occurrence of hazard scenarios with their negative effects on safety and properties.







Annexe B  Fault-tree analysis




B.1  Introduction
For complex multi-component systems, for example such as those employed in the nuclear, chemical,
process and aerospace industries, it is important to analyze the possible mechanisms of failure and
to perform probabilistic analyses for the expected frequency of such failures. Often, each such
system is unique in the sense that there are no other identical systems (same components
interconnected in the same way and operating under the same conditions) for which failure data have
been collected: therefore a statistical failure analysis is not possible. Furthermore, it is not
only the probabilistic aspects of failure of the system which are of interest but also the
initiating causes and the combination of events which can lead to a particular failure.
The engineering way to tackle a problem of this nature, where many events interact to produce other
events, is to relate these events using simple logical relationships (intersection, union, etc.) and
to methodically build a logical structure which represents the system.
In this respect, fault tree analysis is a systematic, deductive technique which allows to develop
the causal relations leading to a given undesired event. It is deductive in the sense that it starts
from a defined system failure event and unfolds backward its causes down to the primary (basic)
independent faults. The method focuses on a single system failure mode and can provide
qualitative information on how a particular event can occur and what consequences it leads to, while
at the same time allowing the identification of those components which play a major role in
determining the defined system failure. Moreover it can be solved in quantitative terms to provide
the probability of events of interest starting from knowledge of the probability of occurrence of
the basic events which cause them.
In the following, we shall give only the basic principles of the technique. The interested reader is
invited to look at the specialized literature for further details, e.g. [Zio, 2007] and
references therein from which the material herein contained has been taken.


B.2  Fault tree construction
A fault tree is a graphical representation of causal relations obtained when a system failure mode
is traced backward to search for its possible causes. To complete the construction of a fault tree
for a complex system, it is necessary to first understand how the system functions. A system flow
diagram (such as a reliability block diagram) is used for this purpose, e.g. to depict the pathways
by which materials are transmitted between components of the system.



The first step in fault tree construction is the selection of the system failure event of
interest. This is called the top event; every following event will be considered in
relation to its effect upon it.
The next step is to identify contributing events that may directly cause the top event to
occur. At least four possibilities exist [Henley and Kumamoto, 1992]:
	
no input to the device;
	primary failure of the device (under operation in the design envelope, random, due to aging or
fatigue);
	human error in actuating or installing the device;
	secondary failure of the device (due to present or past stresses caused by neighboring
components or the environments: for instance common cause failure, excessive flow, external causes
such as earthquakes).


If these events are considered to be indeed contributing to the system fault, then they are
connected to the top event logically via an OR function and graphically through the
OR gate (cf. figure B.1).


 [image: heveaimg/main011.png]
	Figure B.1: Top and first level of a fault tree for a circuit breaker (CB) failing to trip an
electrical circuit, after [GE, 1974]










Once the first level of events directly contributing to the top has been established, each event
must be examined to decide whether it is to be further decomposed in more elementary events
contributing to its occurrence. At this stage, the questions to be answered are:
	
is this event a primary failure?
	is it to be broken down further in more primary failure causes?


In the first case, the corresponding branch of the tree is terminated and this primary event is
symbolically represented by a circle. This also implies that the event is independent of the other
terminating events (circles) which will be eventually identified and that a numerical value for the
probability of its occurrence is available if a quantitative analysis of the tree is to be
performed.
On the contrary, if a first level contributing event is not identified as a primary failure, it must
be examined to identify the sub-events which contribute to its occurrence and their logical
relationships (cf. figure B.2).


 [image: heveaimg/main012.png]
	Figure B.2: AND function example for the circuit breaker of the electrical system with the top event
of Figure B.1, after [GE, 1974]










The procedure of analyzing every event is continued until all branches have been terminated in
independent primary failures for which probability data are available. Sometimes, certain events
which would require further breakdown can be temporarily classified as primary at the current state
of the tree structure and assigned a probability by rule of thumb. These underdeveloped events are
graphically represented by a diamond symbol rather than by a circle.
A fault tree can be described by a set of Boolean algebraic equations, one for each gate of the
tree. For each gate, the input events are the independent variables and the output event is the
dependent variable. Utilizing the rules of Boolean algebra it is then possible to solve these
equations so that the top event is expressed in terms of sets of primary events only.
Finally, the quantitative analysis of the fault tree consists of transforming its logical structure
into an equivalent probability form and numerically calculating the probability of occurrence of the
top event from the probabilities of occurrence of the basic events. The probability of the basic
event is the failure probability of the component or subsystem during the mission time of interest.
The corresponding mathematical details can be found in [Zio, 2007].



Annexe C  Event tree analysis


Event trees are inductive logic methods for identifying the various accident sequences which can
originate from a single initiating event. The approach is based on the discretization of the real
accident evolution in a small number of macroscopic events. The accident sequences derived are then
quantified in terms of their probability of occurrence.
The events delineating the accident sequences are usually characterized in terms of:
	
the intervention (or not) of protection systems which are supposed to take action for the
mitigation of the accident (system event tree);
	the fulfillment (or not) of safety functions (functional event tree);
	the occurrence or not of physical phenomena (phenomenological event tree).


Typically, the functional event trees are an intermediate step to the construction of system event
trees: following the accident-initiating event, the safety functions which need to be fulfilled are
identified; these will later be substituted by the corresponding safety and protection systems.
The system event trees are used to identify the accident sequences developing within the plant and
involving the protection and safety systems.
The phenomenological event trees describe the accident phenomenological evolution outside the plant
(fire, contaminant dispersion, …).
In the following, we shall give only the basic principles of the technique. The interested reader is
invited to consult the specialized literature for further details, e.g. [Zio, 2007] and
references therein from which most of the material herein has been taken.


C.1  Event tree construction
An event tree begins with a defined accident-initiating event which could be a component or an
external failure. It follows that there is one event tree for each different accident-initiating
event considered. This aspect obviously poses a limitation on the number of initiating events which
can be analyzed in details. For this reason, the analyst groups similar initiating events and only
one representative initiating event for each class is investigated in details. Initiating events
which are grouped in the same class are usually such to require the intervention of the same safety
functions and to lead to similar accident evolutions and consequences.
Once an initiating event is defined, all the safety functions that are required to mitigate the
accident must be defined and organized according to their time of intervention. For example (cf.
figure C.1) if the initiating event (IE) is the rupture of a pipe with
release of flammable liquid and the sparking of jet-fire, the first function required would be that
of interception of the released flow rate, followed by the cooling of adjacent tanks and finally the
quenching of the jet. These functions are structured in the form of headings in the functional event
tree. For each function, the set of possible success and failure states must be defined and
enumerated. Each state gives rise to a branching of the tree (cf.
figure C.1). For example, in the typical binary success/failure logic it
is customary to associate to the top branch the success of the function and to the bottom branch its
failure.


 [image: heveaimg/main013.png]
	Figure C.1: Example of functional event tree, after [Zio, 2007]










Figure C.1 shows a graphical example of a system event tree: the
initiating event is depicted by the initial horizontal line and the system states are then connected
in a stepwise, branching fashion: system success and failure states have been denoted by S and
F, respectively. The accident sequences that result from the tree structure are shown in the last
column. Each branch yields one particular accident sequence; for example, IS1F2 denotes the
accident sequence in which the initiating event IE occurs, system 1 is called upon and succeeds
(S1), and system 2 is called upon but fails to perform its defined function (F2). For larger
event trees, this stepwise branching would simply be continued. Note that the system states on a
given branch of the event tree are conditional on the previous system states having occurred. With
reference to the previous example, the success and failure of system 1 must be defined under the
condition that the initiating event has occurred; likewise, in the upper branch of the tree
corresponding to system 1 success, the success and failure of system 2 must be defined under the
conditions that the initiating event has occurred and system 1 has succeeded.


 [image: heveaimg/main014.png]
	Figure C.2: Illustration of system event tree branching, after [USNRC, 1975]












C.2  Event tree evaluation
Once the final event tree has been constructed, the final task is to compute the probabilities of
system failure. Each event (branch) in the tree can be interpreted as the top event of a fault tree
which allows the evaluation of the probability of the occurrence of such event. The value thus
computed represents the conditional probability of the occurrence of the event, given that the
events which precede on that sequence have occurred. Multiplication of the conditional probabilities
for each branch in a sequence gives the probability of that sequence (cf.
figure C.3).


 [image: heveaimg/main015.png]
	Figure C.3: Schematics of the event tree shown with the fault trees used to evaluate the
probabilities of different events
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