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1

Introduction

Context: uncertainty and uncertainty analysis in risk assessment

In all generality, the quantitative analyses of the phenomena occurring in many engineering
applications are based on mathematical models which are then turned into operative computer
codes for simulation. A model provides a representation of a real system which is dependent
on a number of hypotheses and parameters. The model can be deterministic (e.g. Newton’s
dynamic laws or Darcy’s law for groundwater flow) or stochastic (e.g. the Poisson model for describing
the occurrence of earthquake events).

In practice, the system under analysis cannot be characterized exactly: the knowledge of the
underlying phenomena is incomplete. This leads to uncertainty in the analysis, which
can be defined as a state of the analyst who cannot describe or foresee a phenomenon due to
intrinsic variability of the phenomenon itself, or to lack of knowledge and information.
This leads in practice to uncertainty on both the values of the model parameters and on the
hypotheses supporting the model structure. Such uncertainty propagates within the model and
causes variability in its outputs: for example, when many values are plausible for a model
parameter, the model outputs associated to the different values of the uncertain parameter
will be different. The quantification and characterization of the resulting output uncertainty
is an important issue when models are used to guide decision-making. This topic is known as
uncertainty analysis.

An uncertainty analysis aims at determining the uncertainty in analysis results that derives
from uncertainty in analysis inputs [Helton et al. 2006]. We may illustrate the ideas of the
uncertainty analysis by introducing a model f (Y), which depends on the input quantities
Y = {Y1, Y2,…, Yn} and on the function f ; the quantity of interest Z is computed by using the
model Z = f (Y). The uncertainty analysis of Z requires an assessment of the uncertainties
about Y and a propagation through the model f to produce an assessment of the uncertainties
about Z . Typically, the uncertainty about Y and the uncertainty related to the model structure
f , i.e., uncertainty due to the existence of alternative plausible hypotheses on the phenomena
involved, are treated separately; actually, while the first source of uncertainty has been widely
investigated and more or less sophisticated methods have been developed to deal with it, re-
search is still ongoing to obtain effective and agreed methods to handle the uncertainty related
to the model structure [Parry et Drouin 2009]. See also [Aven 2010c] who distinguishes between
model inaccuracies (the differences between Z and f (Y)), and model uncertainties due to
alternative plausible hypotheses on the phenomena involved.

Uncertainty is thus an unavoidable aspect of modeling system behaviour, and is particularly
significant when attempting to understand their limits of operation (reaction to unusually
high loads, temperatures, pressures, etc.), where less experimental data is typically available.
In spite of how much dedicated effort is put into improving the understanding of systems,
components and processes through the collection of representative data, the appropriate
characterization, representation, propagation and interpretation of uncertainty remains a
fundamental element of the risk analysis of any system.
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Types of uncertainty

In a risk assessment context, it is convenient to distinguish between “aleatory” and “epistemic”
uncertainty [Apostolakis 1990; Helton et Oberkampf 2004; USNRC 2009]. The former refers to
phenomena occurring in a random way: probabilistic modeling offers a sound and efficient
way to describe such occurrences. The latter captures the analyst’s confidence in the model
by quantifying the degree of belief of the analysts on how well it represents the actual system;
it is also referred to as state-of-knowledge or subjective uncertainty and can be reduced by
gathering information and data to improve the knowledge on the system behavior.

Aleatory uncertainties concern, for instance, the occurrence of the events that define the
various possible accident scenarios, the time to failure of a component or the random variation
of the actual physical dimensions and material properties of a component or system (due
to differences between the as-built system and its design upon which the analysis is based)
[USNRC 1990; Helton 1998; USNRC 2002]. Two examples of classical probabilistic models used
to describe this kind of uncertainties in probabilistic risk assessments (PRA) are the Poisson
model for events randomly occurring in time (e.g., random variations of the operating state of
a valve) and the binomial model for events occurring “as the immediate consequence of a
challenge” (e.g., failures on demand) [USNRC 2005; Hofer et al. 2002; Cacuci et Ionescu-Bujor 2004;
Krzykacz-Hausmann 2006].

Epistemic uncertainty is associated with the lack of knowledge about the properties and
conditions of the phenomena underlying the behavior of the systems. This uncertainty
manifests itself in the model representation of the system behavior, in terms of both (model)
uncertainty in the hypotheses assumed and (parameter ) uncertainty in the (fixed but poorly
known) values of the parameters of the model [Cacuci et Ionescu-Bujor 2004; Helton et al. 2006].
Both model and parameter uncertainties associated to the current state of knowledge of the
system can be represented by subjective probability distributions within a Bayesian approach
to PRA [Apostolakis 1990, 1995, 1999].

Whereas epistemic uncertainty can be reduced by acquiring knowledge and information on
the system, aleatory uncertainty cannot, and for this reason it is sometimes called irreducible
uncertainty.

Representing and describing uncertainty

Probabilistic analysis is the most widely used method for characterizing uncertainty in physical
systems and models. In the probabilistic approach, uncertainties are characterized by the
probabilities associated with events (an event corresponds to any of the possible states a
physical system can assume, or any of the possible predictions of a model describing the
system).

However, the purely probability-based approaches to risk and uncertainty analysis can be chal-
lenged under the common conditions of limited or poor knowledge on the high-consequence
risk problem, for which the information available does not provide a strong basis for a specific
probability assignment. In such a decision-making context, certain stakeholders may not be
satisfied with a probability assessment based on subjective judgments made by a group of
analysts. In this view, a broader risk description is sought where all the uncertainties are laid
out ‘plain and flat’, with no additional information inserted in the analytic evaluation in the
form of assumptions and hypotheses which cannot be proven right or wrong. This concern
has sparked a number of investigations in the field of uncertainty representation and analysis,
which has led to the development of alternative frameworks, which can be grouped in four
main categories [Aven 2010b, 2011; Aven et Steen 2010; Aven et Zio 2011; Ferson et Ginzburg 1996;
Flage et al. 2009]:

1. imprecise probability, after [Walley 1991] and the robust statistics area [Berger 1994];

2. probability bound analysis, combining probability analysis and interval analysis [Ferson
et Ginzburg 1996; Ferson et Hajagos 2004; Ferson et Tucker 2006; Ferson et al. 2007, 2010; Moore
1979];

3. random sets, in the two forms proposed by [Dempster 1967] and [Shafer 1976] (but see
also [Ferson et al. 2003, 2004; Helton et al. 2007, 2008; Sentz et Ferson 2002]);
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4. possibility theory [Baudrit et Dubois 2006; Baudrit et al. 2006, 2008; Dubois 2006; Dubois
et Prade 1988], which is formally a special case of the imprecise probability and random
set theories.

Finally, notice that in the implementation of the decision it is common that the decision-makers
seek for further protection by adding conservatisms and performing traditional engineering
approaches of ‘defense-in-depth’ to bound uncertainties and in particular ‘unknown unknowns’
(completeness uncertainty).

Objectives of this document

In this document, we critically revisit the above mentioned frameworks of uncertainty analysis.
The driver of the critical analysis is the decision-making process and the need to feed it with
representative information derived from the risk assessment, to robustly support the decision
[Aven et Zio 2011]. The technical details of the different frameworks will be exposed only to
the extent necessary to analyze and judge how these contribute to the communication of
risk and the representation of the associated uncertainties to decision-makers, in the typical
settings of high-consequence risk analysis of complex systems with limited knowledge on
their behaviour.

Document structure

The remainder of this document is structured as follows:

� Chapter 2 presents probabilistic analysis;

� Chapter 3 presents imprecise probability, after [Walley 1991] and the robust statistics area;

� Chapter 4 discusses probability bound analysis, combining probability analysis and
interval analysis;

� Chapter 5 introduces random sets, in the two forms proposed by [Dempster 1967] and
[Shafer 1976];

� Chapter 6 presents possibility theory, which is formally a special case of the imprecise
probability and random set theories;

� Chapter 7 discusses some practical considerations for decision-making processes, and
chapter 8 concludes the analysis.

Readers may be interested in certain other documents by the same authors in the collection
of the Cahiers de la Sécurité Industrielle:

� Uncertainty characterization in risk analysis for decision-making practice (CSI-2012-07),
which provides an overview of sources of uncertainty which arise in each step of a
probabilistic risk analysis;

� Overview of risk-informed decision-making processes (CSI-2012-10), which illustrates
the way in which NASA and the US Nuclear Regulatory Commission implement
risk-informed decision-making.

� Case studies in uncertainty propagation and importance measure assessment (CSI-2013-
12), which presents three case studies of component importance measure estimation
in the presence of epistemic uncertainties and of the propagation of uncertainties
through a risk flooding model.
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2

Probability theory

The traditional tool used to express the uncertainties in risk assessments is probability [Apos-
tolakis 1990]. In this context, the quantities Z and Y referred to in the introduction could be
chances representing fractions in a large (in theory infinite) population of similar items (loosely
speaking, a chance is the Bayesian term for a frequentist probability, cf. the representation
theorem of [de Finetti 1974] or [Bernardo et Smith 2000, p. 172]). In this case, the assessment is
consistent with the so-called probability of frequency approach which is based on the use
of subjective probabilities to express epistemic uncertainties of unknown frequencies, i.e.
the chances [Kaplan et Garrick 1981]. The probability of frequency approach constitutes the
highest level of uncertainty analysis according to a commonly used uncertainty treatment
classification system [Paté-Cornell 1996].

Further details on probability theory are given in the following: in particular, in § 2.1 dif-
ferent interpretations of probability are provided; in § 2.2 one of the available techniques
for propagating uncertainty in a probabilistic framework (i.e., Monte Carlo Simulation, or
MCS) is described in detail; finally, in § 2.3 the advantages and disadvantages of a probabilistic
representation of uncertainty are thoroughly discussed.

2.1 Uncertainty representation

Probability is a single-valued measure of uncertainty, in the sense that uncertainty about the
occurrence of an event A is represented by a single number P(A). Different interpretations
of probabilities exist, and these are closely related to different notions of uncertainty. Two
interpretations of probability are of widespread use in risk analyses: the relative frequency
interpretation (described in § 2.1.1) and the subjective or Bayesian interpretation (§ 2.1.2).

2.1.1 The frequentist view

DEFINITION

The relative frequency interpretation of probability

In this interpretation, probability is defined as the fraction of times an event A occurs if the situation
considered were repeated an infinite number of times. Taking a sample of repetitions of the situation,
randomness causes the event A to occur a number of times and to not occur the rest of the times.
Asymptotically, this process generates a fraction of successes, the “true” probability P(A). This
uncertainty (i.e., variation) is sometimes referred to as aleatory uncertainty.

In this context, let Ω be the sample space containing all the values that a given random variable
Y of interest can assume. In the discrete case, a discrete Probability Distribution Function
(PDF) dY (y): Ω → [0, 1] exists such that ∑

y∈Ω
dY (y) = 1; in the continuous case, a Probability

Density Function (PDF) pY (y) exists such that ∫
Ω
pY (y)dy = 1. The number dY (y) represents

the (limit) frequency of observing y after many trials in the discrete case, and the density of y
in the continuous case. For any measurable subset A of Ω called event, the probability P(A)
of A is
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P(A) = ∑
y∈A

dY (y) (discrete case)

P(A) = ∫
A
pY (y)dy (continuous case)

The probability P(A) this defined is required to have the following basic properties [Helton et
Oberkampf 2004]:

1. if A ∈ Ω, then 0 ≤ P(A) ≤ 1;

2. P(Ω) = 1;

3. if A1,A2,…Ai ,… is a sequence of disjoint sets (events) from Ω, then P(∪iAi) = ∑i P(Ai);
4. P(A) = 1 − P( ̄A) (self-duality property): in words, the probability of an event occurring

(i.e. P(A)) and the probability of an event not occurring (i.e. P( ̄A)) must sum to one: thus,
specification of the likelihood of an event occurring in probability theory also results in,
or implies, a specification of the likelihood of that event not occurring1.

Finally, notice that in the continuous case the Cumulative Distribution Function (CDF) of Y is
FY : Ω → [0, 1], defined from the PDF pY (y) as follows:

FY (y) = P((−∞, y]) = P(Y ≤ y) = ∫
y

−∞
pY (t) dt , ∀y ∈ Ω (2.1)

Byway of example, let us assume that the random variable Y is normal, e.g., Y ∼ N (5, 0.25): the
corresponding PDF pY (y) and CDF FY (y) are shown in figure 2.1, left and right, respectively.
The probability that the variable Y is lower than or equal to y1 = 5.2, i.e., P{Y ≤ y1 = 5.2} =
∫y1=5.2
−∞ pY (y) dy = 0.79 is pictorially shown in figure 2.1 (left) as the shaded area included

between the PDF pY (y) and the straight line y1 = 5.2; notice that this probability is equal to
the value of the CDF FY (y) in correspondence of y1 = 5.2, i.e., FY (5.2) = 0.79 (figure 2.1, right).

Y

y = 5.2
1

P 
(y

)
Y P[Y ≤ y ] = 0.79

 1

P[Y ≤ y ] = 0.79
 1

y = 5.2
1

Figure 2.1 – Probability density function, pY (y) (left) and cumulative distribution function FY (y) (right)
of the normal random variable Y ∼ N (5, 0.25)

Referring to the frequentist definition of probability given above, of course in practice it is
not possible to repeat the experiment an infinite number of times and thus P(A) needs to
be estimated, for example by the relative frequency of occurrence of A in the finite sample
considered. The lack of knowledge about the true value of P(A) is termed epistemic uncertainty.
Whereas epistemic uncertainty can be reduced (by extending the size of the sample), the
aleatory uncertainty cannot. For this reason it is sometimes called irreducible uncertainty
[Helton et Burmaster 1996].

1 This property is peculiar to probability theory: in general, less restrictive conditions on the specification of likelihood
are present in evidence and possibility theories (see chapters 5 and 6).
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2.1. Uncertainty representation

2.1.2 The subjective (Bayesian) view

In the light of this issue, a subjective (Bayesian) interpretation of probability can be given where
probability is a purely epistemic-based expression of uncertainty as seen by the assigner, based
on his/her background knowledge.

DEFINITION

The subjective interpretation of probability

In this view, the probability of an event A represents the degree of belief of the assigner with regard
to the occurrence of A. The probability can be assigned with reference to either betting or some
standard event. If linked to betting, the probability of the event A, P(A), is the price at which the
assessor is neutral between buying and selling a ticket that is worth one unit of payment if the
event occurs, and is worthless otherwise [de Finetti 1974; Singpurwalla 2006]. Following the reference
to a standard, the assessor compares his uncertainty about the occurrence of the event A with some
standard events, e.g. drawing a favourable ball from an urn that contains P(A) × 100% favourable
balls [Lindley 2000].

Irrespective of reference, all subjective probabilities are seen as conditioned on the background
knowledge 𝒦 that the assignment is based on. They are probabilities in the light of current
knowledge [Lindley 2006]. To show the dependencies on 𝒦 it is common to write P(A|𝒦), but
often 𝒦 is omitted as the background knowledge is tacitly understood to be a basis for the
assignments. Elements of 𝒦 may be uncertain and seen as unknown quantities, as pointed
out by [Mosleh et Bier 1996]. However, the entire 𝒦 cannot generally be treated as an unknown
quantity and removed using the law of total probability, i.e. by taking E𝒦[P(A|𝒦)] to obtain
an unconditional P(A).
In this view, randomness is not seen as a type of uncertainty in itself. It is seen as a basis for
expressing epistemic-based uncertainty. A relative frequency generated by random variation
is referred to as a chance, to distinguish it from a probability, which is reserved for expressions
of epistemic uncertainty based on belief [Singpurwalla 2006; Lindley 2006]. Thus, we may use
probability to describe uncertainty about the unknown value of a chance. As an example,
consider an experiment in which the event A of interest occurs p × 100% of the times the
experiment is performed. Suppose that the chance p is unknown. Then, the outcomes of the
experiment are not seen as independent, since additional observations would provide more
information about the value of p. On the contrary, in the case that p were known the outcomes
would be judged as independent, since nothing more could be learned about p from additional
observations of the experiment. Thus, conditional on p the outcomes are independent, but
unconditionally they are not; they are exchangeable. The probability of an event A for which
p is known is simply p. In practice, p is in most cases not known, and the assessor expresses
his/her (a priori) uncertainty about the value of p by a probability distribution H(p). Then,
the probability of A can be expressed as

P(A) = ∫P(A|p)dH(p) = ∫pdH(p) (2.2)

One common approach to risk analysis is to use epistemic-based probabilities to describe
uncertainty about the true value of a relative frequency-interpreted probability (chance).
This is called the probability of frequency approach [Kaplan et Garrick 1981] – probability
referring to the epistemic-based expressions of uncertainty and frequency to the limiting
relative frequencies of events. By taking the expected value of the relative frequency-based
probability with respect to the epistemic-based probabilities, both aleatory and epistemic
uncertainties are reflected.
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2.2 Uncertainty propagation

Referring to the uncertainty propagation task framed in the previous section, let us consider a
model whose output is a function Z = f (Y) = f (Y1, Y2,…, Yj ,…, Yn) of n uncertain variables
Yj , j ∈ 1, 2,…, n, that are “probabilistic”, i.e., their uncertainty is described by probability distri-
butions pY1(y1), pY2(y2),…, pYj(yj),…, pYn(yn). In such a case, the propagation of uncertainty
can be performed by Monte Carlo Simulation (MCS), which comprises the following two main
steps [Kalos et Whitlock 1986; Marseguerra et Zio 2002]:

1. repeated random sampling of possible values of the uncertain variables Yj , j = 1, 2,…, n;

2. evaluation of the model function Z = f (Y) = f (Y1, Y2,…, Yj ,…, Yn) in correspondence of
all the values sampled at step i. above.

In more detail, the operative steps of the procedure are:

1. set i = 1;

2. sample the ith set of random realizations y ij , j = 1…n, of the “probabilis-
tic” variables Yj , j = 1, 2,…, n, from the corresponding probability distributions
p1Y (y1), p2Y (y2),…, pjY (yj j),…, pnY (yn);

3. calculate the value zi of the model output Z as zi = f (y i1, y i2,…, y ij ,…, y in);
4. if i < N (N being the number of samples2), set i = i + 1 and go back to step 2. above;

otherwise, go to 5. below;

5. post-process the N output values zi = f (y i1, y i2,…, y ij ,…, y in), i ∈ 1…N , thereby obtained
in order to provide an empirical estimate for

� the Probability Density Function (PDF) pZ(z) of Z (e.g., by tallying the resulting
values zi = f (y i1, y i2,…, y ij ,…, y in), i = 1…N , in a histogram);

� the Cumulative Distribution Function (CDF) FZ(z) of Z as FZ(z) ≈ 1
N ∑N

i=1 I {z
i ≤

z}, where I {zi ≤ z} is 1, if zi < z and 0, otherwise.

Finally, notice that the random sampling performed at step 2. above may account for possible
dependencies existing between the uncertain variables Yj , j = 1…n; on the other hand, such
dependencies can be obviously included in the analysis, only if they can be modeled within a
classical MCS framework [Ferson 1996a,b].

By way of example and only for illustration purposes, let Y1 be represented by a uniform
probability distribution U [a1, b1], where a1 = 1 and b1 = 3 (figure 2.2, top, left), and Y2 be
represented by a uniform probability distribution U [a2, b2], where a2 = 2 and b2 = 5 (figure 2.2,
top, right). Figure 2.2, bottom, left shows the analytical PDF pZ(z) of the output Z = Y1 + Y2
(solid line) together with the corresponding empirical estimate (histogram) obtained by MCS
with N = 100 000 samples; figure 2.2, bottom, right shows the empirical estimate of the CDF
FZ(z) of Z = Y1 + Y2 (solid line) obtained by MCS with N = 100 000 samples.

2.3 Discussion

The probability-based approaches to risk and uncertainty analysis can be challenged. Many
researchers and analysts find the above framework for assessing risk and uncertainties to be
too narrow: risk is more than some analysts’ subjective probabilities, which may lead to poor
predictions. The knowledge that the probabilities are based on could be poor and/or based
on wrong assumptions. Many analysts would argue that the information available for the
probabilities commonly does not provide a sufficiently strong basis for a specific probability
assignment. In a risk analysis context, there are often many stakeholders and they may not be
satisfied with a probability-based assessment providing subjective judgments made by one
analysis group. A broader risk description is sought.

2 The number of samples used in a MCS is chosen as a compromise between the cost of the simulation (a larger
number of samples being more expensive to evaluate) and the level of confidence obtained (a larger statistical
sample leads to a higher level of confidence). The number of samples can be chosen before running the simulation
(N = 10 000, for example) or can be determined during the simulation, by continuing to sample random realizations
until the quantity of interest is no longer changing significantly.
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2.3. Discussion
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Figure 2.2 – Top, left: uniform PDF U [a1, b1], where a1 = 1 and b1 = 3, for uncertain variable Y1; top,
right: uniform PDF U [a2, b2], where a2 = 2 and b2 = 5, for uncertain variable Y2; bottom, left:
analytical PDF pZ(z) of the output Z = Y1 + Y2 (solid line) together with the corresponding
empirical estimate (histogram) obtained by MCS with N = 100 000 samples; bottom, right:
empirical estimate of the CDF FZ(z) of the output Z = Y1 + Y2 (solid line) obtained by MCS
with N = 100 000 samples

Adopting the subjective probability approach, probabilities can always be assigned, but their
support is not reflected by the numbers produced. [Dubois 2010] expresses the problem in this
way: if the ill-known inputs or parameters to a mathematical model are all represented by
single probability distributions, either objective when available or subjective when scarce
information is available, then the resulting distribution on the output can hardly be properly
interpreted: “the part of the resulting variance due to epistemic uncertainty (that could be
reduced) is unclear”.

The problem seems to be that aleatory uncertainties are mixed with epistemic uncertainties.
However, if chances (more generally, probability models with parameters) can be established
(justified) reflecting the aleatory uncertainties a full risk description needs to assess uncer-
tainties about these quantities. It would not be sufficient to provide predictive distributions
alone, as important aspects of the risk then would not be revealed. The predictive distributions
would not distinguish between the stochastic variation and the epistemic uncertainties as
noted by [Dubois 2010]. The indicated inadequacy of the subjective probabilities for reflecting
uncertainties is thus more an issue of addressing the right quantities: if chances can be estab-
lished (justified), the subjective probabilities should be used to reflect the uncertainties about
these chances.

Probability models constitute the basis for statistical analysis, and are considered essential
for assessing the uncertainties and drawing useful insights [Helton 1994; Winkler 1996]. The
probability models coherently and mechanically facilitate the updating of probabilities. A
probability model presumes some sort of model stability, populations of similar units need to be
constructed (in the Bayesian context, formally an infinite set of exchangeable random variables).
But such stability is often not fulfilled [Bergman 2008]. Consider the definition of a chance.
In the case of a die we would establish a probability model expressing that the distribution
of outcomes is given by (p1, p2,…, p6), where pi is the chance of outcome i, interpreted as
the fraction of outcomes resulting in outcome i. However, in a risk assessment context the
situations are often unique, and the establishment of chances means the construction of
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fictional populations of non-existing similar situations. Then chances and probability models
in general, cannot be easily defined as in the die tossing example; in many cases, they cannot
be meaningfully defined at all. For example, it makes no sense to define a chance (frequentist
probability) of a terrorist attack [Aven et Heide 2009]. In other cases, the conclusion may
not be so obvious. For example, a chance of an explosion scenario in a process plant may
be introduced in a risk assessment, although the underlying population of infinite similar
situations is somewhat difficult to describe.

There is a huge literature addressing the problems of the probability–based risk assessments.
Here are some examples of critical issues raised. [Reid 1992] argues that there is a common ten-
dency of underestimation of the uncertainties in risk assessments. The disguised subjectivity of
risk assessments is potentially dangerous and open to abuse if it is not recognized. According
to [Stirling 2007], using risk assessment when strong knowledge about the probabilities and
outcomes does not exist, is irrational, unscientific and potentially misleading. [Tickner et Kriebel
2006] stress the tendency of decision-makers and agencies not to talk about uncertainties
underlying the risk numbers. Acknowledging uncertainty can weaken the authority of the
decision-maker and agency, by creating an image of being unknowledgeable. Precise numbers
are used as a facade to cover up what are often political decisions. [Renn 1998] summarizes
the critique drawn from the social sciences over many years and concludes that technical
risk analyses represent a narrow framework that should not be the single criterion for risk
identification, evaluation and management.

Summing up, the advantages of Monte Carlo Simulation (MCS) (as a means of propagating
uncertainty in classical probability theory) are the following [Ferson 1996a,b, 1999; Ferson et al.
2010]):

� it is flexible because it does not suffer from the complexity, multidimensionality and
nonlinearity of the system model f (Y) and, therefore, it does not force to resort to
simplifying approximations;

� it is simple to implement and explain;

� it can use information about correlations among variables.

On the contrary, the disadvantages of MCS can be summarized as follows [Ferson 1996a,b;
Ferson et Burgman 1995; Ferson et Ginzburg 1996; Ferson et Long 1994; Ferson 1999; Ferson et al.
2010]:

� although it is not widely acknowledged, it requires a lot of empirical information. Proba-
bility distribution of each of the variables involved in the assessment need to be estimated.
This means knowing not only their means, but also their variances and indeed the shapes
of their statistical distributions: in other words, the analyst is asserting that he/she can
estimate the probabilities of all possible values for every uncertain parameter. Also,
the analyst needs to estimate the statistical dependencies among all of these variables:
this means knowing the cross correlations among the variables and, in principle, any
triplewise or higher-order interactions that may exist. Formally speaking, MCS cannot
be done without all this information [Ferson 1996b];

� when all the required empirical information is not available, the analyst is forced to make
(arbitrary, subjective and often unjustified) assumptions and guesses;

� the assumptions that are routinely made about distribution shapes and statistical depen-
dencies between distributions can lead to ‘non-protective’ conclusions that underestimate
the true risks. For instance, analysts often assume all their input variables are mutually
independent and pretend that all the correlations would be zero if measured: the result
of such an assumption (if it is wrong) can be to miscalculate risk [Ferson 1994a; Ferson et
Burgman 1995; Ferson et Ginzburg 1996; Ferson et Long 1994]. In fact, the tails of the resulting
probability distributions can be very sensitive to information about the shapes and de-
pendencies of statistical distributions [Bukowski et al. 1995; Ferson 1994a]. It is the tails that
give the probabilities of extreme events. An argument can be made that the whole point
of the risk analysis in the first place is to learn about these extreme events in the tails.
Yet the detailed data needed to get reasonable estimates of them in a probabilistic risk
analysis are hardly ever available in practical situations. When the assumptions made in
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a Monte Carlo Simulation are wrong, it is possible to estimate risks to be low when they
are actually high. In this sense, probabilistic risk analysis as it is currently practiced may
have the opposite flaw compared to the hyper-conservatism of worst case approaches;

� it confounds ignorance with variability because it has an inadequate model of ignorance.
For instance, when all that is known about a quantity is its theoretical range, probabilists
traditionally employ a uniform distribution over this range to represent this uncertainty.
This approach dates back to Laplace himself and his “principle of insufficient reason”.
The approach is also justified by modern reasoning appealing to the “maximum entropy
criterion” [Jaynes 1957; Lee et Wright 1994]. But not knowing the value of a quantity is not
the same as having it vary randomly. When probabilists do not distinguish between
equiprobability and ignorance, they are confounding variability with incertitude.

� there is no sound and satisfactory way to handle uncertainty about the proper mathe-
matical model to use (i.e., to answer questions such as “is this the correct expression to
evaluate in the first place? Are these assumptions appropriate?”);

� merging subjective estimates coming from different sources may not provide reliable
results;

� Monte Carlo Simulation may be computationally cumbersome. Actually, it is based on the
repeated random sampling of possible values of the parameters Y and the subsequent
evaluation of the model output Z = f (Y) in correspondence of each of these sampled
values. However, two factors increase the computational effort required, sometimes
making it impractical [Schueller 2009]:

• a large number of samples (e.g., of the order of many thousands) is usually neces-
sary to achieve acceptable estimation accuracy (in particular, when the quantities to
be estimated are very small probabilities);

• long calculations (several hours) are typically necessary for each run of the system
model f (Y) (this is particularly true if the model function f (Y) is represented by a
detailed mechanistic code).

Given the above critiques, it is not surprising that alternative approaches for representing and
describing uncertainties in risk assessment have been suggested, such as the four categories
described in the following chapters.
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3

Imprecise (interval) probability

In § 3.1, the concept of imprecise (or interval) probabilities, also known as interval analysis in
the literature, is explained. In § 3.2, interval arithmetic is presented as a means of propagating
uncertainty within the framework of interval analysis; finally, in § 3.3, the advantages and dis-
advantages of the interval analysis framework for uncertainty representation and propagation
are thoroughly discussed.

3.1 Uncertainty representation

To explain the meaning of imprecise probabilities (or interval probabilities) consider an event
A. Uncertainty on the likelihood of A occurring is represented by a lower probability P(A)
and an upper probability P(A), giving rise to a probability interval [P(A), P(A)], where
0 ≤ P(A) ≤ P(A) ≤ 1. The difference

ΔP(A) = ̄P(A) − P(A) (3.1)

is called the imprecision in the representation of the event A. Single-valued probabilities are a
special case of no imprecision and the lower and upper probabilities coincide.

Peter M. Williams developed a mathematical framework for imprecise probabilities, based
on de Finetti’s betting interpretation of probability [de Finetti 1974]. This foundation was
further developed independently by Vladimir P. Kuznetsov and Peter Walley (the former only
published in Russian), see [Kuznetsov 1991] and [Walley 1991]. Following de Finetti’s betting
interpretation, the lower probability is interpreted as the maximum price for which one would
be willing to buy a bet which pays 1 if A occurs and 0 if not, and the upper probability as
the minimum price for which one would be willing to sell the same bet. If the upper and
lower values are equal, the interval is reduced to a precise probability. These references, and
[Walley 1991] in particular, provide an in-depth analysis of imprecise probabilities and their
interpretations, with a link to applications to probabilistic reasoning, statistical inference and
decisions.

It is however also possible to interpret the lower and upper probabilities using the reference to
a standard interpretation of a subjective probability P(A): such an interpretation is indicated
by [Lindley 2006, p. 36]. Consider the subjective probability P(A) and say that the analyst
states that his/her assigned degree of belief is greater than the urn chance of 0.10 (the degree
of belief of drawing one particular ball from an urn which include 10 balls) and less than the
urn chance of 0.5. The analyst is not willing to make any further judgment. Then, the interval
[0.10, 0.50] can be considered an imprecision interval for the probability P(A).

Of course, even if the assessor assigns a probability P(A) = 0.3, one may interpret this
probability as having an imprecision interval [0.26, 0.34] (as a number in this interval is equal
to 0.3 when displaying one digit only), interpreted analogously to the [0.1, 0.5] interval. Hence
imprecision is always an issue in a practical uncertainty analysis context. This imprecision is
commonly viewed as a result of measurement problems. [Lindley 2006] argues that the use of
interval probabilities confuses the concept of measurement with the practice of measurement.
The reference to the urn lottery provides a norm, and measurement problems may make the
assessor unable to behave according to it. See also discussion in [Bernardo et Smith 2000, p. 32].
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However, other researchers and analysts have a more positive view on the need for such
intervals, see discussions in [Aven et Zio 2011; Ferson et Ginzburg 1996; Ferson et Hajagos 2004;
Ferson et Tucker 2006; Ferson et al. 2007, 2010]: imprecision intervals are required to reflect
phenomena as discussed above, for example when experts are not willing to express their
knowledge more precisely than by using probability intervals.

Imprecise probabilities are also linked to the relative frequency interpretation of probability
[Coolen et Utkin 2007]. The simplest case reflects that the “true” frequentist probability p
is in the interval [P(A), P(A)] with certainty. More generally and in line with the above
interpretations of imprecision intervals based on subjective probabilities P(·), a two-level
uncertainty characterization can be formulated (see, e.g., [Kozine et Utkin 2002]): [P(A), P(A)]
is an imprecision interval for the subjective probability P(a ≤ p ≤ b) where a and b are
constants. In the special case that P(A) = P(A) (= q, say) we are led to the special case of a
q × 100% credibility interval for p (i.e., with subjective probability q, the true value of p is in
the interval [a, b]).

3.2 Uncertainty propagation

[Moore 1966] described the use of interval arithmetic to evaluate the ranges of functions taking
interval arguments. The approach consists in generalizing the definitions of the binary
operations to the case in which the inputs are intervals. In practice, the rules for interval
arithmetic are obtained from answering the following question: “what are the largest and
smallest possible values that could be obtained under this mathematical operation?” [Ferson
et al. 2004]. For all real numbers x , y, z, t , such that 0 ≤ x ≤ y ≤ 1 and 0 ≤ z ≤ t ≤ 1, we
have:

[x , y] + [z, t] = [x + z, y + t] (3.2)

[x , y] − [z, t] = [x − t , y − z] (3.3)

[x , y] × [z, t] = [x × z, y × t] (3.4)

[x , y]/[z, t] = [x/t , y/z],with z > 0 (3.5)

min([x , y], [z, t]) = [min(x , z),min(y , t)] (3.6)

max([x , y], [z, t]) = [max(x , z),max(y , t)] (3.7)

Note that formulas (3.4) and (3.5) for multiplication and division, respectively, are considerably
simpler than those of ordinary interval arithmetic. The simplicity is a consequence of the
constraint that probabilities must lie in the interval [0, 1] (i.e., 0 ≤ x ≤ y ≤ 1 and 0 ≤ z ≤ t ≤
1). In the case of real numbers ranging in (−∞, +∞), the general formulas for multiplication
and division become more complicated so that

[x , y] ⋅ [z, t] = [min(x ⋅ z, x ⋅ t , y ⋅ z, y ⋅ t),max(x ⋅ z, x ⋅ t , y ⋅ z, y ⋅ t)] (3.8)

[x , y]/[z, t] = [min(x/z, x/t , y/z, y/t),max(x/z, x/t , y/z, y/t)] , with z, t ≠ 0 (3.9)

By way of example, let us suppose that the epistemic uncertainty associated to the probabilities
P(A) and P(B) of the independent events A and B is represented by the intervals [0.1, 0.2] and
[0.15, 0.35], respectively. Using (3.3) and (3.4) the probability P(A∪B) = 1−(1−P(A))(1−P(B))
of the event (A∪B) is computed as [1−(1−0.1)(1−0.15), 1−(1−0.2)(1−0.35)] = [0.2350, 0.4800].

In many problems, interval arithmetic can be used in a straightforward way to obtain results
that are both rigorous and best possible. However, when an uncertain number appears more
than once in a mathematical expression, the naïve sequential application of the rules of interval
arithmetic may yield results that are wider than they should be. The result is still rigorous
in the sense that it is sure to enclose the true range, but it may fail to be best-possible if it is
wider than needed. The reason for this loss of optimality is basically that the uncertainty in
the repeated parameter is entered into the calculation more than once [Ferson 1996a; Ferson et al.
2004]. Referring to the example above, the computation of P(A∪B) as P(A)+P(B)−P(A)P(B)
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actually leads to [0.1+0.15−0.2×0.35, 0.2+0.35−0.1×0.15] = [0.1800, 0.5350]. As expected, the
interval [0.1800, 0.5350] obtained using the mathematical expression [P(A)+P(B)−P(A)P(B)]
(where both P(A) and P(B) appear more than once) is (unnecessarily) much wider than the
interval [0.2350, 0.4800] obtained using the expression [1 − (1 − P(A))(1 − P(B))] (where
P(A) and P(B) appear just once).

Until now it has been assumed that the model function to be evaluated is made of simple
arithmetic operations, e.g., sums, products, differences, etc., and is known explicitly. This is not
always the case in risk assessment. First, there may be functions that cannot be conveniently
characterized as the composition of simple arithmetic functions; second, the form of the
function may not even be mathematically known. For example, in many situations, the analyst
may need to use a computer model whose internal details are not accessible or too complex
to analyze: in these cases, the function is a ‘black box’ to which one gives inputs and from
which one collects the outputs [Ferson 1999].

When these ‘black-box’ functions have to be evaluated by interval analysis, one must be
careful not to assume that the upper bound of the function is given by the upper bound of its
input(s). By way of example, in expressions like Z = 2

Y , the lower (upper ) bound of Y should
be used to estimate an upper (lower ) bound for Z [Ferson 1999].

In addition, it must be remembered that the function may not even be monotonic. If the ranges
of the inputs happen to straddle a function minimum, then either the upper or the lower bound
of the input will produce the upper bound once it has been mapped through the function, but
it cannot be predicted which without knowing all the details. If the input ranges straddle a
function maximum, then neither the upper nor the lower bound of the input will yield the
upper bound of the function result: some value between them produces the upper bound. In
these cases, the endpoints of the input interval cannot be simply used to find the endpoints
of the function. By way of example, consider the function Z(Y ) = (Y − 1)2, with Y = [0, 3].
The lower and upper bounds on Z are obviously 0 (obtained in correspondence of Y = 1) and
4 (obtained in correspondence of the upper bound on Y , i.e., Y = 3, respectively; however,
the naïve identification of the lower and upper bounds on Z through the evaluation of Z in
correspondence of the lower and upper bounds of Y would erroneously lead to Z(Y = 0) = 1
and Z(Y = 3) = 4, respectively. Non-monotonicity requires the analysis of the entire input
interval. A brute-force approach analogous to a Monte Carlo Simulation (MCS) would be
useful. In this approach, the inputs have to be varied over their possible ranges and in all
possible combinations, just as in MCS; then, the smallest and largest answers obtained have
to be recorded: such values define the interval of the result. This brute-force approach is
approximate since the true bounds on the result are not absolutely guaranteed (e.g., due to the
presence of cusps or other elements that escape detection in the numerical application) [Ferson
1999].

3.3 Discussion

Based on the considerations and examples above, the advantages of interval analysis can
be summarized as follows [Ferson 1999; Ferson et al. 2010]):

� it is quite natural for scientists who are accustomed to reporting their measured values in
terms of the best estimate and the possible error of the estimate. This may be expressed
with the ‘plus or minus’ convention, or in terms of an interval which is presumed to
contain the actual value;

� it is very simple and easy to explain;

� it works no matter what the nature and sources of uncertainty are. In risk assessment
practices, measurements are often very expensive to make: as a consequence, there
are typically very few of them. It is not uncommon, for instance, that there is but one
measurement taken in the field. In this case, since we have no way of even roughly
estimating statistical variance, interval arithmetic may be an appropriate way to propagate
the estimate’s measurement error. In such cases, the size of measurement error can be
inferred from the measurement protocol directly. For instance, in using a ruler to measure
a length, the measurement error is plus or minus one half of the smallest graduation on
the ruler, or perhaps one tenth if you trust your interpolation skills. Such measurement
error can be thought of non-statistical uncertainty since no probability statement is
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involved in its estimation or interpretation. Other forms of non-statistical uncertainty
arise when a modeler uses intuition to assign parameter values. They are often given as
ranges of feasibility without any further specification. In such cases, no sampling has
occurred and no probability is defined (or is even contemplated), so it seems inappropriate
to use probabilistic methods and so confound the modeler’s ignorance with real statistical
variation that may be represented elsewhere in the model;

� it is especially useful in preliminary screening assessments;

� it is a fairly straightforward and standard method that yields rigorous results. In other
words, if the inputs really lie within their respective intervals and the mathematical ex-
pression used to combine them together is the real one, using interval analysis guarantees
us that the true result will lie somewhere in the computed interval;

� it obtains rigorous results without the need of any assumptions about the distributions or
dependence among the variables: sure bounds on risk are computed no matter what is
true about correlations or the details of the distribution of each variable within its range3.

On the contrary, the disadvantages of interval analysis can be summarized as follows
[Ferson 1999; Ferson et al. 2010]:

� the computed ranges can grow very quickly. It can be demonstrated that intervals become
more and more conservative as arithmetic operations are applied: as a consequence,
intervals become wider and wider and are less and less precise about the result;

� it cannot take account of distributions, correlations/dependencies and detailed empirical
information (which may be sometimes available) about a quantity beside its potential
range. It would not help, for instance, to know that most values are close to some central
tendency, or that the variation in the quantity expressed through time follows a normal
distribution. Knowledge about the statistical associations between variables is also useless
in interval analyses. Because this method does not use all the available information, it
can produce results that are more conservative than is necessary given what is known;

� it addresses only the bounds on risks, but it makes no statement about how likely such
extreme risks are. Even if the upper bound represents an intolerable risk, if the chance of
it actually occurring is vanishingly small, it may be unreasonable to base regulation on
this value;

� it is somewhat paradoxical in nature because it does not compute the exact value of a
given quantity, but it produces exact bounds on that quantity.

� repeated parameters may represent a problem.

The considerations above highlight the need to choose between robust methods that are not
very informative and methods that can provide many details but which need an impractical
amount of information. Ideally, a method for uncertainty representation and propagation
should bring together the robustness and rigor of interval analysis with the detail of proba-
bilistic analysis without making too many empirical demands. Probability bound analysis,
described in the next chapter, represents a step forward in this direction.

3 Notice that this concept can be viewed as an advantage and a disadvantage of the approach at the same time (see
below).
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Probability bound analysis

In probability bound analysis, interval analysis is used for those components whose aleatory
uncertainties cannot be accurately estimated; for the other components, traditional probabilis-
tic analysis is carried out. Further details on probability bound analysis are given in what
follows: in particular, in § 4.1 the main characteristics of this approach are briefly summarized;
in § 4.2 the associated technique for uncertainty propagation is described in detail; finally, in
§ 4.3 the advantages and disadvantages of probability bound analysis are thoroughly discussed.

4.1 Uncertainty representation

[Ferson et Ginzburg 1996] suggest a combined probability analysis-interval analysis, referred to
as a probability bound analysis. The setting is a risk assessment where the aim is to express
uncertainties about some parameters Yj , j = 1…n, of a model (a function Z of the Yj ’s, for
example Z equal to the product of the parameters Yj). For the parameters where the aleatory
uncertainties can be accurately estimated, traditional probability theory is employed; for those
parameters where the aleatory uncertainties cannot be accurately determined, interval analysis
is used. In this way uncertainty propagation is carried out in the traditional probabilistic way
for some parameters, and intervals are used for others. More specifically it means that:

1. for parameters Yj where the aleatory uncertainties cannot be accurately estimated, use
interval analysis expressing that aj ≤ Yj ≤ bj for constants aj and bj ;

2. for parameters Yj where the aleatory uncertainties can be accurately assessed, use proba-
bilities (relative frequency-interpreted probabilities) to describe the distribution over Yj .
In particular, notice that probability bound analysis employs Cumulative Distribution
Functions (CDFs) rather than Probability Density Functions (PDFs) to describe aleatory
uncertainty and perform computations [Ferson et Ginzburg 1996; Ferson et al. 2010].

4.2 Uncertainty propagation

Uncertainty propagation is performed by combining steps 1. and 2. of § 4.1 above to generate
a probability distribution over Z , for the different interval limits. For example, assume that for
j = 1, interval analysis is used with bounds a2 = 2 and b1 = 7 (figure 4.1, top, left): this interval
represents a quantity about whose value the analyst is uncertain because he/she has no more
precise measurement of it. It may be varying within this range, or it may be a fixed, unvarying
value somewhere within the range: the analyst does not have any particular information one
way or the other. On the contrary, for j = 2, a probabilistic analysis is used: in particular, Y2
is described by a lognormal probability distribution pY2(y2) = ln(μ2, σ2), where μ2 = 1.6094
and σ2 = 0.4214 (figure 4.1, top, right depicts the corresponding CDF FY2(y2) truncated at the
0.005th and 0.995th percentiles for convenience).

The remaining graphs in figure 4.1 show the product Z = Y1 × Y2 (figure 4.1, middle, left),
sum Z = Y1 + Y2 (figure 4.1, middle, right), quotient Z = Y2/Y1 (figure 4.1, bottom, left) and
difference Z = Y2 − Y1 (figure 4.1, bottom, right). For illustration purposes, let us consider
the product Z = Y1 × Y2 depicted in figure 4.1, middle, left. The answer that probability
bounds analysis produces is not a single CDF FZ(z), but rather it is a region within which the
cumulative probability distribution of the product Z = Y1 ×Y2 must lie: this region is identified
by the upper and lower CDFs ̄FZ(z) and FZ(z), respectively, depicted in figure 4.1, middle, left
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and it is referred to in the literature as probability box (p-box). This is to say that, whatever
the true value(s) of the uncertain quantity Y1 the analyst has represented with the interval,
the CDF FZ(z) of the product Z = Y1 × Y2 lies somewhere within the region [ ̄FZ(z), FZ(z)]
identified by the upper and lower CDFs ̄FZ(z) and FZ(z), respectively, depicted in figure 4.1,
middle, left. From a merely computational viewpoint, it is worth noting that the limiting upper
CDF ̄FZ(z) on Z = Y1×Y2 is obtained by setting Y1 to its lower bound a1 = 2 and letting Y2 vary
according to its (aleatory) probability distribution, i.e., pY2(y2) = ln(μ2 = 1.6094, σ2 = 0.4214);
on the contrary, the limiting lower CDF FZ(z) on Z = Y1 × Y2 is obtained by setting Y1 to its
upper bound b1 = 7 and letting Y2 vary according to its (aleatory) probability distribution, i.e.,
pY2(y2) ∼ ln(μ2 = 1.6094, σ2 = 0.4214)4. The result obtained and in displayed in figure 4.1,
middle, left fully expresses the uncertainty induced by the two factors Y1 (i.e., purely epistemic
uncertainty) and Y2 (i.e., purely aleatory uncertainty). Any more precise answer than the
one represented in figure 4.1, middle, left would simply be underestimating the degree of
uncertainty present in the calculation of Z = Y1 × Y2. For instance, if the analyst had used a
uniform distribution pY1(y1) = U [a1 = 2, b1 = 7] to represent the first factor Y1 rather than
an interval, and performed the multiplication according to the rules of probability theory,
he/she would have obtained one particular CDF FZ(z) roughly centered between the upper
and lower CDFs ̄FZ(z) and FZ(z) depicted in figure 4.1, middle, left. But such an answer
would, however, have a wholly unjustified precision. In other words, it might be wrong, either
under- or over-estimating probabilities for the possible range of products. Of course it might
be exactly correct by accident, but such an outcome would actually be remarkably unlikely.

As highlighted above, a p-box [ ̄FZ(z), FZ(z)] is designed to simultaneously express both
variability and incertitude. The horizontal span of the probability bounds are a function of
the variability in the result (i.e., of aleatory uncertainty); the vertical breadth of the bounds is
a function of the analyst’s ignorance/incertitude (i.e., of epistemic uncertainty). A pure risk
analysis problem with perfectly characterized probability distributions as inputs will yield
a pure probability distribution as the result. Values, distributions and dependencies that are
imperfectly known contribute to a widening of the bounds. The greater the ignorance, the
wider the vertical distance between bounds, and the more difficult to make precise probabilistic
statements about the expected frequencies of extreme events. But this is what one wants;
after all, ignorance should muddle the answer to some extent. Something is obviously amiss
information-theoretically if we can combine ignorance and gain more precision than we
started with.

Finally, notice that probability distributions, intervals and scalar numbers are all special cases
of p-boxes. Because a probability distribution expresses variability and lacks incertitude,
the upper and lower bounds of its p-box, ̄FZ(z) and FZ(z), are coincident at the value of
the cumulative distribution function (which is a non-decreasing function from zero to one),
i.e., ̄FZ(z) = FZ(z) = FZ(z). An interval expresses only incertitude. Its p-box looks like a
rectangular box whose upper and lower bounds jump from zero to one at the endpoints of the
interval. A precise scalar number lacks both kinds of uncertainty. Its p-box is just a step from
0 to 1 in correspondence of the scalar value itself [Ferson et al. 2010].

4 In the same way, the limiting upper and lower CDFs ̄FZ(z) and FZ(z) on Z = Y1 + Y2, are obtained by setting Y1 to
its lower bound a1 = 2 and to its upper bound b1 = 7, respectively, and letting Y2 vary according to its (aleatory)
probability distribution, i.e., pY2(y2) ∼ ln(μ2 = 1.6094, σ2 = 0.4214). Conversely, the limiting upper and lower
CDFs ̄FZ(z) and FZ(z), respectively, on both Z = Y2/Y1 and Z = Y2–Y1 are obtained by setting Y1 to its upper
bound b1 = 7 and to its lower bound a1 = 2, respectively, and letting Y2 vary according to its (aleatory) probability
distribution, i.e., pY2(y2) ∼ ln(μ2 = 1.6094, σ2 = 0.4214).
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Figure 4.1 – Top, left: interval [a1, b1] = [2, 7] representing the (epistemic) uncertainty on variable Y1;
top, right: lognormal CDF FY2(y2) = ln(μ2, σ2) with μ2 = 1.6094 and σ2 = 0.4214 representing
the (aleatory) uncertainty on variable Y2; middle, left: probability box [ ̄FZ(z), F Z(z)] for the
product Z = Y1 × Y2; middle, right: probability box [ ̄FZ(z), F Z(z)] for the sum Z = Y1 + Y2;
bottom, left: probability box [ ̄FZ(z), F Z(z)] for the quotient Z = Y2/Y1; bottom, right:
probability box [ ̄FZ(z), F Z(z)] for the difference Z = Y2 − Y1

4.3 Discussion

Based on the considerations and examples above, the advantages of probability bound
analysis can be summarized as follows [Ferson et Hajagos 2004; Ferson et Tucker 2006; Ferson
1999; Ferson et al. 2007, 2010; Ferson et Ginzburg 1996]:

� it distinguishes variability and incertitude;

� it permits analysts to make risk calculations without requiring overly precise assumptions
about parameter values, dependence among variables, or distribution shape. Actually,
probability bounds analysis brings together the classically grounded research on bounding
probabilities with the recent development of methods for calculation to solve the two
fundamental problems in risk assessment of i) not knowing precisely the probability
distributions and ii) not knowing exactly the interdependencies among them [Ferson
1996b];

� it may be especially useful in risk assessments where probabilistic characterizations are
desired and empirical information is limited [Ferson 1999]. Probability bounds analysis
does not require a great deal of data, but it can make use of a great deal more of the
information that is available to inform a decision than, e.g., interval analysis. Thus, in
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general, probability bounds analysis allows to obtain fully rigorous results even when
the empirical information is very poor, which is exactly the situation most risk assessors
face in their work;

� it gives the same answer as interval analysis does when only range information is
available. It also gives the same answers as Monte Carlo analysis does when information
is abundant enough to precisely specify input distributions and their dependencies. Thus,
it is a generalization of both interval analysis and probability theory;

� it is guaranteed to bound answers (and it also puts sure bounds on Monte Carlo results);

� it produces bounds that get narrower with better empirical information;

� it often produces optimal solutions;

� it supports all standard mathematical operations;

� it is computationally faster than Monte Carlo.

On the contrary, the disadvantages of probability bound analysis can be summarized as
follows [Ferson et Ginzburg 1996; Ferson 1999; Ferson et al. 2010]:

� uncertainty must be represented by cumulative distribution functions (CDFs) (i.e., proba-
bility boxes);

� probability boxes do not show what is most likely within the box (in other words, there
are no “shades of gray” or second-order information);

� although probability boxes are guaranteed to bound answers, they may not express
the tightest possible bounds given available information (in other words, they may
overestimate epistemic uncertainty as interval analysis does);

� infinite tails of the CDFs must be truncated for the ease of computation with probability
boxes;

� optimal bounds may become expensive to compute when parameters are repeated (see
also interval analysis, described in chapter 3).
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5

Evidence theory

Evidence theory (also known as Dempster-Shafer theory or theory of belief functions) in
the two forms proposed by [Dempster 1967] and [Shafer 1976] allows for the incorporation and
representation of incomplete information: its motivation is to be able to treat situations where
there is more information than an interval, but less than a single specific probability distribution.
The theory is able to produce epistemic-based uncertainty descriptions and in particular
probability intervals.

In § 5.1, thorough details about evidence theory are provided; in § 5.2, the issue of uncer-
tainty propagation within evidence theory is treated; finally, in § 5.3, the advantages and
disadvantages of evidence theory are thoroughly discussed.

5.1 Uncertainty representation in evidence theory

Fuzzy measures provide powerful mathematical languages for the representation of the epis-
temic uncertainty in the attribution of an element y to a particular member A of a countable
set. For example, suppose that y is a parameter whose values may vary in a given range
Y also called Universe of Discourse (UY ): then, the epistemic uncertainty associated to the
ambiguity of the value of y can be represented by assigning to each crisp set in Y a value
which represents the degree of evidence that y belongs to such set. Thus, fuzzy measures deal
with the uncertainty in the assignment of y to crisp sets, which in turn are not uncertain.

It is important to underline that the theory of fuzzy measures is different from the theory of
fuzzy sets which deals with the uncertainty associated with vague, linguistic information. In
the case of fuzzy set theory, the linguistic statements are represented by overlapping fuzzy
sets, thus with no sharp boundaries: correspondingly, due to the vagueness in the available
information a given y ∈ Y may simultaneously belong to several sets with different degrees
of membership.

Thus, the difference between a fuzzy measure and a fuzzy set is clear: the former represents
the uncertainty in the assignment of an element to a given crisp set, due to lack of knowledge
or information deficiency, whereas the latter represents the uncertainty in the definition of
the boundaries of a set, due to a lack of sharp boundaries deriving from vague information
[Klir et Yuan 1995].

For the formal definition of fuzzy measures, let us consider a finite UY and an element y ∈ Y
which is not fully characterized, i.e., it might belong to more than one crisp set in Y . Let P(Y )
denote the so called power set of Y , i.e., the set of all subsets of Y . For a given set A ⊆ P(Y ),
the uncertainty in the assignment of y to A is quantitatively represented by the value of a
function g(A) which maps to [0, 1] the available evidence regarding the membership of y
in A.

Any fuzzy measure satisfies the minitivity and maxitivity constraints with respect to the
conjunction and disjunction of two events A and B:

g(A ∩ B) ≤ min[g(A), g(B)] (5.1)

g(A ∪ B) ≥ max[g(A), g(B)] (5.2)
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There are two forms of fuzzy measure functions, namely the belief measure, Bel(A), associ-
ated to pre-conceived notions, and the plausibility measure Pl(A), associated with plausible
information.

The belief measure represents the degree of belief, based on the available evidence, that a given
element of Y belongs to A as well as to any of the subsets of A; it is the degree of belief in set
A, based on the available evidence. In this sense, the different subsets of Y may be viewed
as the answers to a particular question, some of which are correct but it is not known which
ones with full certainty.

A fundamental property of the belief function is that:

Bel(A) + Bel( ̄A) ≤ 1 (5.3)

Thus, the specification of the belief function is capable of incorporating a lack of confidence
in the occurrence of the event defined by subset A, quantitatively manifested in the sum of
the beliefs of the occurrence (Bel(A)) and non occurrence (Bel( ̄A)) being less than one.

The difference 1 − Bel(A) + Bel( ̄A) is called ignorance. When the ignorance is 0, the available
evidence justifies a probabilistic description of the uncertainty.

The plausibility measure can be interpreted as the total evidence that a particular element of
Y belongs not only to A or any of its subsets, as for Bel(A), but also to any set which overlaps
with A.

A fundamental property of the plausibility function is that:

Pl(A) + Pl( ̄A) ≥ 1 (5.4)

Thus, the specification of the plausibility function is capable of incorporating a recognition
of alternatives in the occurrence of the event defined by subset A, quantitatively manifested
in the sum of the plausibilities of the occurrence (P(A)) and non occurrence (Pl( ̄A)) being
greater than or equal to one.

The links with the belief measure are:

Pl(A) = 1 − Bel( ̄A) (5.5)

Bel(A) = 1 − Pl( ̄A) (5.6)

from which it follows that

Bel(A) ≤ Pl(A) (5.7)

The representation of uncertainty based on the above two fuzzy measures falls under the
framework of evidence theory [Shafer 1976]. Whereas in probability theory, a single probability
distribution function is introduced to define the probabilities of any event, represented as a
subset of the sample space, in evidence theory there are two measures of the likelihood, belief
and plausibility. Also, in contrast to the inequalities (5.3) and (5.4), probability theory imposes
more restrictive conditions on the specification of likelihood as a result of the requirement
that the probabilities of the occurrence and nonoccurrence of an event must sum to one (see
(5.22) below).

Evidence theory allows epistemic uncertainty (imprecision) and aleatory uncertainty (vari-
ability) to be treated separately within a single framework. Indeed, the belief and plausibility
functions provide mathematical tools to process information which is at the same time of
random and imprecise nature.

As a further insight, notice that evidence theory is based on the idea of obtaining degrees
of belief for one question from subjective probabilities for related questions [Shafer 1990].
To illustrate, suppose that a diagnostic model is available to indicate with reliability (i.e.
probability of providing the correct result) of 0.9 when a given system is failed. Considering a
case in which the model does indeed indicate that the system is failed, this fact justifies a 0.9
degree of belief on such event (which is different from the related event of model correctness
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5.1. Uncertainty representation in evidence theory

for which the probability value of 0.9 is available) but only a 0 degree of belief (not a 0.1) on
the event that the system is not failed. This latter belief does not mean that it is certain that
the system has failed, as a zero probability would: it merely means that the model indication
provides no evidence to support the fact that the system is not failed. The pair of values {0.9, 0}
constitutes a belief function on the propositions “the system is failed” and “the system is not
failed”.

From the above simple example, one can appreciate how the degrees of belief for one question
(has the system failed?) are obtained from probabilities related to another question (is the
diagnostic model correct?).

Denoting by A the event that the system is failed and by m the diagnostic indication of the
system state, the conditional probability P(m|A), i.e. the model reliability, is used as the degree
of belief that the system is failed. This is unlike the standard Bayesian analysis, where focus
would be on the conditional probability of the failure event given the state diagnosis by the
model, P(A|m), which is obtained by updating the prior probability on A, P(A), using Bayes’
rule.

As for the interpretation of the measures introduced in evidence theory, [Shafer 1990] uses
several metaphors for assigning (and hence interpreting) belief functions. The simplest says
that the assessor judges that the strength of the evidence indicating that the event A is true,
Bel(A), is comparable with the strength of the evidence provided by a witness who has a
Bel(A) × 100% chance of being reliable. Thus, we have

Bel(A) = P(The witness claiming that A is true is reliable) (5.8)

The metaphor is to be interpreted as the diagnostic model analyzed above, witness reliability
playing the role of model reliability.

5.1.1 Basic probability assignment

The belief and plausibility functions are defined from a mass distribution m(A) on the sets A
of the power set P(Y ) of the UY , called basic probability assignment (bpa), which expresses
the degree of belief that a specific element y belongs to the set A only, and not to any subset
of A. The bpa satisfies the following requirements:

m: P(Y ) → [0, 1] m(0) = 0 ∑
A∈P(Y )

m(A) = 1 (5.9)

and defines the belief and plausibility measures as follows,

Bel(A) = ∑
B⊆A

m(B) (5.10)

Pl(A) = ∑
B∩A≠0

m(B) (5.11)

Note that from the definition (5.9), it is not required that m(Y ) = 1, nor that m(A) ≤ m(B)
when A ⊆ B, nor that there be any relationship between m(A) and m( ̄A). Hence, the bpa is
not a fuzzy measure nor a probability distribution.

For each set A of the power set P(Y ), the bpa m(A) expresses the proportion to which all
available and relevant evidence supports the claim that a particular element y of Y , whose
characterization is incomplete, belongs to set A. The value of m(A) pertains solely to set A
and does not imply any additional claim regarding subsets of A; if there is additional evidence
supporting the claim that the element y belongs to a subset of A, say B ⊆ A, it must be
expressed by another probability assignment on B, i.e. m(B).
Every set Ai ∈ P(Y ) for whichm(Ai) > 0 is called a focal element ofm: as the name suggests,
focal elements are subsets of Y on which the available evidence focuses. When Y is finite,
m can be fully characterized by a list of its focal elements Ai with the corresponding values
m(Ai), which together form the body of evidence {Ai ,m(Ai)}.
Total ignorance, then, amounts to the following assignment:
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m(Y ) = 1 m(Ai) = 0, ∀Ai ≠ Y (5.12)

which means,

Bel(Y ) = 1; Bel(Ai) = 0, ∀Ai ≠ Y (5.13)

Pl(Y ) = 0; Pl(Ai) = 1, ∀Ai ≠ 0 (5.14)

Note that contrary to probability theory which assigns the probability mass to individual values
of y , the theory of evidence makes basic probability assignments m(A) on sets A of the power
set P(Y ) of theUY (the focal sets). On the other hand, evidence theory encompasses probability
theory: when focal elements are disjoint sets, both belief and plausibility are probability
measures, i.e., Bel = P = Pl for unions of such sets. Thus, all probability distributions may be
interpreted as bpa’s.

A possible approximate encoding of a continuous probability distribution function pY of a
real random variable Y into a bpa proceeds as follows [Baudrit et al. 2006]:

1. discretize the range of values of Y into n disjoint intervals ]ai , ai+1], i = 1, 2,…, q: these
are the focal elements;

2. build the mass distribution of the bpa by assigning m(]ai , ai+1]) = p(Y ∈ [ai , ai+1]).

In summary:

� m(A) is the degree of evidence of membership in set A only; it is the amount of likelihood
that is associated with A but without any specification of how this likelihood might be
apportioned over A: this likelihood might be associated with any subset of A.

� Bel(A) gathers the imprecise evidence that asserts A; it is the total evidence of member-
ship in set A and all its subsets, which is quantified according to (5.10) as the minimal
amount of probability that must be assigned to A by summing the pertinent probability
masses of the single values in the focal sets: this amount of likelihood cannot move out
of A because the summation in (5.10) involves only subsets B of A;

� Pl(A) gathers the imprecise evidence that does not contradict A; it is the total evidence
of membership in set A, all its subsets and all other sets which intersect with A, which is
quantified according to (5.11) as the maximal amount of probability that could be assigned
to A by summing the pertinent probability masses of the single values in the focal sets:
this amount of likelihood could move into A from another intersecting set, because the
summation in (5.11) involves all sets B which intersect with A.

Then, an expert believes that the evidence supporting set A is at least Bel(A) and possibly as
high as Pl(A).

5.1.2 Aggregation of multiple sources of evidence

Let us consider the common situation in which imprecise evidence is available from more than
one source. For simplicity, let us consider two experts whose evidence is expressed in terms of
two sets of bpa’s, m1(A),m2(A) on the focal sets A of the power set P(Y ) of Y . Aggregation
of this evidence into a joint bpam12(A) can be obtained by means of Dempster’s rule [Dempster
1967]:

m12(A) =
∑B∩C m1(B)m2(C)

1 − K
∀A ≠ 0 (5.15)

where the complementary normalization factor K is given by

K = ∑
B∩C=0

m1(B)m2(C) (5.16)

According to (5.15) and (5.16) above, the degree of evidence m1(B) regarding focal set B ∈
P(Y ), from the first source and the degree of evidence m2(C) focused on focal set C ∈ P(Y ),
from the second source, are aggregated by taking their product m1(B)m2(C) focused on the

24



5.1. Uncertainty representation in evidence theory

intersection focal set B ∩ C = A. This way of combining evidence sources is analogous to the
way in which in probability theory joint probability density functions (PDFs) are calculated
from two independent marginal PDFs and is thus justified on the same grounds. However,
some intersections B ∩ C of different focal elements B and C , from the first and second source,
may result in the same set A so that one must sum their product contribution to obtainm12(A).
Furthermore, some of the intersections may be the empty set, for which m12(0) = 0. Then, the
sum of products m1(B)m2(C) of all focal elements B of m1 and C of m2 such that B ∩ C ≠ 0
is equal to 1 − K , so that a normalized joint basic assignment m12 (as required by (5.9)) is
obtained by dividing by K given in (5.16).

5.1.3 Relation to probability measures

Let us consider a bpa only on individual values (singletons) y ∈ Y but not on any other subset
A of the power set P(Y ), i.e., m(y) = Bel(y), y ∈ Y ,m(A) = 0,∀A ∈ Y . Then, m(y) is a
probability measure, commonly denoted as p(y), which maps the evidence on singletons to
the unit interval [0, 1].

It is then clear that the key distinction between a probability measure and either a belief or
plausibility measure is that in the former all evidence is focused on singletons y only whereas
in belief and plausibility measures the evidence is focused on (focal) subsets A of the power
set P(Y ).
Obviously, from the probability measure p(y) defined on all singletons y ∈ Y one can compute
the probability measure p(A) of any set A, which is simply a collection of singletons:

p(A) = ∑
y∈A

p(y), ∀A ∈ P(Y ) (5.17)

Notice that in this case in which the basic probability assignment focuses only on singletons
y ∈ Y , as required for probability measures, the belief, plausibility and probability of a set A
are all equal:

Bel(A) = Pl(A) = p(A) = ∑
y∈A

p(y) = ∑
y∈A

m(y) ∀A ∈ P(Y ) (5.18)

Thus, belief and plausibility measures overlap when all the evidence is focused only on
singletons y ∈ Y and they both become probability measures.

Also, considering for simplicity only two focal sets A and B, a probability measure arises if:

Bel(A ∪ B) = Bel(A) + Bel(B) A ∩ B = 0 (5.19)

Pl(A ∪ B) = Pl(A) + Pl(B) A ∩ B = 0 (5.20)

On the contrary, when evidence does not reside exclusively on the singletons y ∈ Y , it can be
shown that

Bel(A) ≤ p(A) ≤ Pl(A) (5.21)

Thus, the dual measures of belief and plausibility form intervals [Bel(A), Pl(A)]∀A ∈ P(X)
which can be viewed as imprecise estimates of probabilities derived from the coarse evidence
expressed by the basic probability assignment.

Finally, from (5.4), (5.5) and (5.18) it follows that

p(A) + p( ̄A) = 1 (5.22)

which imposes a more stringent condition on the probability measure than (5.3) and (5.4) do
on the belief and plausibility measures, respectively.
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5.2 Uncertainty propagation in evidence theory

Referring to the uncertainty propagation task framed in the introduction, let a model whose
output is a function Z = f (Y) = f (Y1, Y2,…, Yj ,…, Yn) of n uncertain variables Yj , j = 1, 2,…, n,
whose uncertainty is described by the so-called body of evidence or basic probability assignment
(bpa), i.e., by a list of discrete (focal) sets

{AY1,t1 ,AY2,t2 ,…,AYj ,tj ,…,AYn,tn} = {[y
1,t1

, ̄y1,t1], [y2,t2
, ̄y2,t2],…, [y

j,tj
, ̄yj,tj],…, [y

n,tn
, ̄yn,tn]}

tj = 1, 2,…, qj , j = 1, 2,…, n

and by the corresponding probability masses {mY1,t1 ,mY2,t2 ,…,mYj ,tj ,…,mYn,tn}, tj =
1, 2,…, qj , j = 1, 2,…, n. In summary, the body of evidence (or basic probability assign-
ment) {(AZ ,tZ ,mAZ ,tZ ): tZ = 1, 2,…, qZ } for the output Z = f (Y) = f (Y1, Y2,…, Yj ,…, Yn)
is computed by constructing the Cartesian product of the n collections of the interval-mass
pairs {(AYj ,tj ,mYj ,tj): tj = 1, 2,…, qj , j = 1, 2,…, n}. In more detail, the discrete focal sets
AZ ,tZ , tz = 1, 2,…, qz , are obtained by evaluating AZ ,tZ = f (AY1,t1 ,AY2,t2 ,…,AYj ,tj ,…,AYn,tn) for
all possible combinations of t1 = 1, 2,…, q1, t2 = 1, 2,…, q2,…, tj = 1, 2,…, qj ,…, tn = 1, 2,…, qn
(notice that by so doing qz = q1 · q2 · … · qj · … · qn). Assuming that the uncertain vari-
ables Yj , j = 1, 2,…, n, are independent, the corresponding probability masses mAZ ,tZ , tz =
1, 2,…, qz = q1 · q2 · … · qj · … · qn, are then simply obtained as the product of the probability
masses of the focal sets of the uncertain input variables Yj , j = 1, 2,…, n, i.e., mAZ ,tZ = mAZ

=
f (AY1,t1 ,AY2,t2 ,…,AYj ,tj ,…,AYn,tn), tZ = mY1,t1 · mY2 , t2 · … · mYj ,tj · … · mYn , tn for all possible
combinations of t1 = 1, 2,…, q1, t2 = 1, 2,…, q2,…, tj = 1, 2,…, qj ,…, tn = 1, 2,…, qn5. Finally,
the plausibility Pl(A) and belief Bel(A) for each set A of interest contained in the universe of
discourse UZ of Z can be obtained as Pl(A) = ∑AZ ,tz∩A≠0mAZ ,tZ and Bel(A) = ∑AZ ,tz⊆A mAZ ,tZ ,
respectively [Ferson et al. 2003, 2004; Helton et al. 2007, 2008; Sentz et Ferson 2002; Baudrit et
Dubois 2005; Baudrit et al. 2003; Fetz 2001; Fetz et Oberguggenberger 2004; Helton et Oberkampf
2004; Moral et Wilson 1996; Oberkampf et Helton 2002; Oberkampf et al. 2001; Tonon 2004; Tonon
et al. 2000a,b].

A body of evidence

By way of example, let Y1 be represented by the body of evidence (or basic probability assignment)

{(AY1,t1 ,mY1,t1) t1 = 1, 2, q1 = 3} = {(AY1,1 = [1, 3],mY1,1 = 0.2),
(AY1,2 = [3, 5],mY1,2 = 0.5),
(AY1,3 = [4, 6],mY1,3 = 0.3)}

and Y2 be represented by the body of evidence (or basic probability assignment)

{(AY2,t2 ,mY2,t2): t2 = 1, 2, q2 = 3} = {(AY2,1 = [1, 4],mY2,1 = 0.4),
(AY2,2 = [2, 6],mY2,2 = 0.1),
(AY2,3 = [4, 8],mY2,3 = 0.5)}

In addition, for clarity figure 5.1, top, left and right shows the corresponding upper and lower CDFs
̄FY1(y1) = PlY1(−∞, y1), ̄FY2(y2) = PlY2(−∞, y2), F Y1

(y1) = BelY1(−∞, y1), F Y2
(y2) = BelY2(−∞, y2) of Y1

and Y2, respectively.

Table 5.1 reports the body of evidence (or basic probability assignment)
{(AZ ,tZ ,mAZ ,tZ ): tZ = 1, 2,…, qZ = q1 · q2 = 9} of the output Z = Y1 + Y2 constructed (under the
assumption of independence between Y1 and Y2) by means of the Cartesian product of the two col-
lections of interval-mass pairs {(AY1,t1 ,mY1,t1): t1 = 1, 2, q1 = 3} and {(AY2,t2,mY2,t2): t2 = 1, 2, q2 = 3}
indicated above. Again, for clarity the upper and lower CDFs of Z , i.e., ̄FZ(z) = PlZ(−∞, z) and
F Z(z) = BelZ(−∞, z), respectively, are shown in figure 5.1, bottom.

5 It is of paramount importance to note that if the uncertain variables Yj , j = 1, 2,…, n are not independent, completely
different approaches have to be undertaken to calculate mAZ ,tZ , tz = 1, 2,…, qz . The interested reader is referred to,
e.g., [Ferson et al. 2004] for further details.
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5.2. Uncertainty propagation in evidence theory

Z = Y1 + Y2 (AY1,1 = [1, 3],mY1,1 = 0.2) (AY1,2 = [3, 5],mY1,2 = 0.5) (AY1,3 = [4, 6],mY1,3 = 0.3)

(AY2,1 = [1, 4],mY2,1 = 0.4) (AZ ,1 = [2, 7],mZ ,1 = 0.08) (AZ ,2 = [4, 9],mZ ,2 = 0.2) (AZ ,3 = [5, 10],mZ ,3 = 0.12)

(AY2,2 = [2, 6],mY2,2 = 0.1) (AZ ,4 = [3, 9],mZ ,4 = 0.02) (AZ ,5 = [5, 11],mZ ,5 = 0.05) (AZ ,6 = [6, 12],mZ ,6 = 0.03)

(AY2,3 = [4, 8],mY2,3 = 0.5) (AZ ,7 = [5, 11],mZ ,7 = 0.1) (AZ ,8 = [7, 13],mZ ,8 = 0.25) (AZ ,9 = [8, 14],mZ ,9 = 0.15)

Table 5.1 – Body of evidence (or basic probability assignment)
{(AZ ,tZ ,mAZ ,tZ ): tZ = 1, 2,…, qZ = q1 · q2 = 9} for the output Z = Y1 + Y2 obtained
by means of the Cartesian product between the interval-mass pairs {(AY1,1 =
[1, 3],mY1,1 = 0.2), (AY1,2 = [3, 5],mY1,2 = 0.5), (AY1,3 = [4, 6],mY1,3 = 0.3)} of Y1

and {(AY2,1 = [1, 4],mY2,1 = 0.4), (AY2,2 = [2, 6],mY2,2 = 0.1), (AY2,3 = [4, 8],mY2,3 = 0.5)} of
Y2
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Figure 5.1 – Top, left: upper and lower CDFs of Y1, i.e., ̄FY1(y1) = PlY1(−∞, y1) and F Y1
(y1) = BelY1(−∞, y1),

respectively, associated to the bpa {(AY1,t1 ,mY1,t1): t1 = 1, 2, q1 = 3} reported in table 5.1; top,
right: upper and lower CDFs of Y2, i.e., ̄FY2(y2) = PlY2(−∞, y2) and F Y2

(y2) = BelY2(−∞, y2),
respectively, associated to the bpa {(AY2 , t2,mY2,t2): t2 = 1, 2, q2 = 3} reported in table 5.1;
bottom: upper and lower CDFs of Z = Y1 + Y2, i.e., ̄FZ(z) = PlZ(−∞, z) and F Z(z) =
BelZ(−∞, z), respectively, associated to the bpa {(AZ ,tZ ,mAZ ,tZ ): tZ = 1, 2,…, qZ = q1 · q2 = 9}
reported in table 5.1.
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5.3 Discussion

Based on the considerations and examples above, the advantages of evidence theory can
be summarized as follows [Ferson 1999; Ferson et al. 2003, 2004; Helton et al. 2007, 2008; Sentz
et Ferson 2002]:

� it distinguishes variability and incertitude;

� it permits analysts to make risk calculations without requiring overly precise assumptions
about parameter values, dependence among variables, or distribution shape [Ferson 1996b];

� it may be especially useful in risk assessments where probabilistic characterizations are
desired and empirical information is limited [Ferson 1999];

� basic probability assignments can be constructed with (almost) any kind of data (e.g.,
data sets in which measurement error about the values is expressed as intervals, censored
data, datasets in which observed values have intrinsic indistinguishability, …);

� it encompasses probability theory (i.e., the two theories coincide when the basic probabil-
ity assignments are singletons or disjoint intervals); it encompasses interval analysis (the
two theories coincide when the basic probability assignment is constituted by a single
interval): as a consequence, it includes also probability bound analysis; finally, notice
that it encompasses also possibility theory (see the following chapter);

� it produces bounds that get narrower with better empirical information;

� it supports all standard mathematical operations;

� it is simple to implement.

On the contrary, the disadvantages of evidence theory can be summarized as follows [Ferson
et al. 2003, 2004; Helton et al. 2007, 2008; Sentz et Ferson 2002; Ferson et al. 2010]:

� it is not yet widely known and applied so that it has not been broadly accepted in the risk
assessment community. Much effort has beenmade in this area, oftenwith amathematical
orientation, but no convincing framework for risk assessment in practice presently exists
based on these alternative theories. Further research is required to make this theory
operational in a risk assessment context;

� basic probability assignments (i.e., intervals with the associated probabilities) do not
show what is most likely within the bpa’s (in other words, there are no shades of gray or
second-order information within the bpa’s);

� Dempster’s rule is weird and controversial.

The next chapter describes possibility theory, which is a subset of evidence theory.
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6

Possibility theory

The rationale for using possibility distributions to describe epistemic uncertainty lies in the
fact that a possibility distribution defines a family of probability distributions (bounded above
and below by the so-called possibility and necessity functions, respectively), thus it allows to
account for the expert’s inability to specify a single probability distribution [Baudrit et Dubois
2006; Baudrit et al. 2006, 2008; Dubois 2006; Dubois et Prade 1988]. Notice that possibility theory
can be considered a special case of evidence theory (see previous chapter).

In § 6.1, thorough details about possibility theory are provided; in § 6.2, the issue of uncer-
tainty propagation within possibility theory is treated; finally, in § 6.3, the advantages and
disadvantages of possibility theory are thoroughly discussed.

6.1 Uncertainty representation using possibility theory

Possibility theory is a special branch of evidence theory that deals with bodies of evidence
whose focal elements A1,A2,…,An on the power set P(Y ) of the UOD UY (also called Y for
brevity) are nested, i.e.

A1 ⊂ A2 ⊂ … ⊂ An ∈ P(Y ) (6.1)

Then, the belief and plausibility measures Bel(Ai) and Pl(Ai) are said to represent a consonant
body of evidence in the sense that the evidence allocated to the various subsets does not
conflict. For a consonant body of evidence,

Bel(A ∩ B) = min [Bel(A),Bel(B)] (6.2)

Pl(A ∪ B) = max [Pl(A), Pl(B)] (6.3)

for any pairs of focal sets A,B ∈ P(Y ).
Comparing (6.2) and (6.3) with the general properties of fuzzy measures (5.1) and (5.2), one
can see that possibility theory is based on the extreme values of fuzzy measures with respect
to intersection and union sets. On the other hand, comparing to (5.17)–(5.20) one can see that
possibility theory is minitive and maxitive, and not additive as is probability theory.

Consonant belief and plausibility measures are referred to as necessity, N , and possibility,
Π, measures, respectively, characterized by the properties (6.2) & (6.3) and with the duality
relationships (5.3) and (5.4) still holding. In addition, necessity and possibility measures
constrain each other in a strong way:

N (A) > 0 ⇒ Π(A) = 1 (6.4)

Π(A) < 1 ⇒ N (A) = 0 (6.5)

Necessity and possibility measures are sometimes defined axiomatically by equations (6.2)
and (6.3), from which their structure can be derived as theorems.
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6.1.1 Numerical possibility theory

The basic notion of numerical possibility theory is the possibility distribution which assigns to
each value y in a range Y (also called Universe of Discourse, UY ) a degree of possibility πY (y) ∈
[0, 1] of being the correct value of an uncertain variable (not necessarily random) [Dubois 2006].
In a sense, then, the possibility distribution πY (y) reflects the degree of similarity between
y and an ideal prototype (the true value) for which the possibility degree is 1. Thus, πY (y)
measures the distance between y and the prototype: in some cases, this may be determined
objectively, e.g. by a defined measurement procedure [Krishnapuram et Keller 1993]; in other
cases, it may be based on subjective judgment. When πY (y) = 0 for some y , it means that the
outcome y is considered an impossible situation. When πY (y) = 1 for some y, it means that
the outcome y is possible, i.e., is just unsurprising, normal, usual [Dubois 2006]. This is a much
weaker statement than when probability is 1.

If y and y′ are such that πY (y) > πY (y′), then y is considered to be a more plausible value than
y′, i.e., closer to the prototype. A possibility distribution is thus an upper, semi-continuous
mapping from the real line to the unit interval describing what an analyst knows about the
more or less plausible values y of the uncertain variable ranging on Y . These values are
assumed to be mutually exclusive, since the uncertain variable takes on only one value, the
true one. This also gives the normalization condition:

∃y: πY (y) = 1 (6.6)

Since the condition πY (y) = 1means that the fact that the uncertain variable is equal to x is just
unsurprising, normal, usual (a much weaker statement than pY (y) = 1), the normalization (6.6)
claims that at least one value is viewed as totally possible. Indeed, if ∀y ∈ Y , πY (y) < 1, the
uncertainty representation given by the possibility distribution would be logically inconsistent
since it would suggest that all values in Y are only partially possible. In this respect, the degree
of consistency of a sub-normalized possibility distribution (sup

y∈Y
πY (y) < 1) is:

cons(πY ) = sup
y∈Y

πY (y) (6.7)

A possibility distribution π1 is at least as informative (specific) as another one π2 if and only
if π1 ≤ π2 [Yager 1992]. In the particular case that ∀y ∈ Y , πY (y) = 1, πY (y) contains no
information since it simply describes the fact that any value y ∈ Y is possible; in this case the
possibility measure is said to be vacuous.

6.1.2 Relationship between possibility distribution and possibility and necessity measures

Every possibility and necessity measuresΠ(A),N (A), ∀A ∈ P(Y ) are uniquely represented
by the associated possibility distribution πY (y) through the following maximization and
minimization relationships, respectively:

Π(A) = sup
y∈A

πY (y) (6.8)

N (A) = 1 − Π( ̄A) = inf
y∉A

(1 − πY (y)) (6.9)

6.1.3 Relationship between possibility distribution and fuzzy sets

Possibility theory can be formulated not only with respect to nested bodies of evidence (6.1)
but also in relations to fuzzy sets. Indeed, fuzzy sets are also based on families of nested
sets, the so-called α-cuts [Zadeh 1965]. Consider a fuzzy set F on the range Y (or UOD UY ).
Given y ∈ Y (or y ∈ UY ), the membership function value μF ,Y (y) represents the degree of
compatibility of the value y with the linguistic concept expressed by F . On the other hand,
given the proposition “𝒴 is y” on the linguistic variable 𝒴, it is more meaningful to interpret
μF ,Y (y) as the degree of possibility that the linguistic variable 𝒴 is equal to y. With this
interpretation, the possibility μF ,Y (y) of “𝒴 = y” is numerically equal to the degree μF ,Y (y)
with which y belongs to F , i.e. is compatible with the linguistic concept expressed by it:
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6.1. Uncertainty representation using possibility theory

πF ,Y (y) = μF ,Y (y) ∀y ∈ UY (6.10)

Then, given μF ,Y (y), the associated possibility measure ΠF is defined for all A ∈ P(Y ) as:

ΠF(A) = max
y∈A

πF ,Y (y) (6.11)

This measure expresses the uncertainty regarding the actual value of variable Y given by the
proposition “Y is y”.

Dually, for normal fuzzy sets the associated necessity measure can be computed as:

NF(A) = 1 − ΠF( ̄A) ∀A ∈ P(Y ) (6.12)

Thus, the possibility and necessity measures can be seen to be formally equivalent to fuzzy
sets, the membership grade of an element y to the fuzzy set corresponding to the degree of
possibility of the singleton.

A problem arising from this equivalence is that the intersection of two consonant belief
functions, like the possibility and necessity measures, using Dempster’s rule is not guaranteed
to lead to a consonant result. There exist methods to combine consonant possibility measures
to obtain a consonant possibility measure, but they are rather cumbersome [Klir et Yuan 1995].

6.1.4 Possibility and necessity as probability bounds

A unimodal numerical possibility distribution may thus also be viewed as a set of nested con-
fidence intervals, which are the α-cuts AY

α = [y
α
, ̄yα] = {y , πY (y) ≥ α} of πY (y). The degree

of certainty that AY
α = [y

α
, ̄yα] contains the value of the uncertain variable is N ([y

α
, ̄yα]),

which is equal to 1-α if πY (y) is continuous. The range of values is widest at possibility
level α = 0. Just above possibility level α = 0 is the range of values that are ‘just possible’ or
only ‘conceivable’. This interval is the range that everyone would agree contains the true
value. It is the most conservative estimate of the uncertainty about a quantity. In contrast,
the range of values is narrowest at possibility level α = 1. Thus, this level corresponds to
the greatest optimism about the uncertainty. It is the range of values that are identified as
‘entirely possible’. This range might in fact be a point, in which case it would be the best
estimate of the value. But if it is an interval, it is the narrowest one that would be given by a
very confident empiricist (see also § 6.1.1). At intermediate levels 0 < α < 1 are ranges which
are intermediate in terms of their possibility.

Conversely, the body of evidence [(A1, λ1), (A2, λ2),…, (Am, λm)] formed by a nested set of
intervals Ai , where Ai ⊂ Ai+1, i = 1, 2,…,m − 1, with degrees of necessity (i.e. certainty)
λi = N (Ai) that Ai contains the value of the uncertain variable (λ1 ≤ λ2 ≤ … ≤ λm, due to
the monotonicity of the necessity function N ) is equivalent to the least informative (specific)
possibility distribution that obeys the constraints λi = N (Ai), i = 1, 2,…,m [Dubois et Prade
1992]:

πY (y) =
⎧{
⎨{⎩

1 if y ∈ A1

min
i: y∉Ai

1 − λi otherwise (6.13)

This solution is the least committed one with respect to the available data, since by allowing
the greatest possibility degrees in agreement with the constraints it defines the least restrictive
possibility distribution. The set of possibility values πY (y), y ∈ Y thereby obtained is finite.

Dually, the family of nested confidence intervals [(A1, λ1), (A2, λ2),…, (Am, λm)] can be re-
constructed from the possibility distribution πY (y) [Dubois 2006]).

Under this view, a pair (A, λ) supplied by an expert is interpreted as stating that the subjective
probability pY (A) is at least equal to λ [Dubois et Prade 1992]. In particular, the α-cut of a
continuous possibility distribution can be interpreted as the inequality

P(uncertain variable ∈ ⌊y
α
, ̄yα⌋) ≥ 1 − α
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or equivalently as

p(uncertain variable ∉ ⌊y
α
, ̄yα⌋) ≤ α

Thus, we can interpret any pair of dual necessity/possibility functions as lower and upper
probabilities induced from specific probability families: degrees of necessity are equated to
lower probability bounds and degrees of possibility to upper probability bounds.

Formally, let πY be a possibility distribution inducing a pair of necessity/possibility functions
[N , Π]. The probability family 𝒫(πY ) is defined as:

𝒫(πY ) = {pY ,∀A measurable:N (A) ≤ pY (A)} = {pY ,∀A measurable: pY (A) ≤ πY (A)}
(6.14)

In this case, the probability family 𝒫(πY ) is entirely determined by the probability intervals
it generates.

sup
pY

pY (A) = Π(A) (6.15)

inf
pY

pY (A) = N (A) (6.16)

Similarly, suppose pairs (Ai , λi) are supplied by an expert as subjective probabilities that p(Ai)
is at least equal to λi , where Ai is a measurable set. The probability family 𝒫(πY ) is defined
as:

𝒫(πY ) = {pY ,∀Ai: λi ≤ pY (Ai)} (6.17)

We thus know that pY ∈ ⌊ p
Y
, ̄pY⌋, with ̄pY = Π and p

Y
= N [Dubois et Prade 1992].

Notice that possibility, necessity and probability measures never coincide, except for the
special case of perfect evidence, i.e. all the body of evidence is focused on just one singleton
whereas there is zero evidence on all other focal elements. The probability and possibility
distribution functions are equal and such that one element of the UOD is assigned the value
of 1 and all other elements are assigned a value of 0.

As an example [Klir et Yuan 1995], consider a temperature variable 𝒴 taking only integer values.
The information about its value is given in terms of the fuzzy proposition 𝒴 is around 21°C as
expressed by the fuzzy set F given in figure 6.1, top. The ambiguous information represented
by fuzzy set F induces a possibility distribution πF ,Y that, according to (6.10) coincides with
μF ,Y (cf. table 6.1). The (nested) α-cuts of μF ,Y (figure 6.1, bottom) constitute the focal elements
of the corresponding possibilistic body of evidence, whose possibility and necessity measures
and basic probability assignments are reported in table 6.1.

Set Π N m

A1 = {21} 1 1/3 1/3

A2 = {20, 21, 22} 1 2/3 1/3

A3 = {19, 20, 21, 22, 23} 1 1 1/3

Table 6.1 – Possibility, necessity measures and basic probability assignments of the focal elements of the
example of figure 6.1

As a further example, consider the following [Anoop et Rao 2008; Baraldi et Zio 2008]. We
consider an uncertain parameter y; based on its definition we know that the parameter can
take values in the range [4, 6] and the most likely value is 5: to represent this information a
triangular possibility distribution on the interval [4, 6] is used, with maximum value at 5; cf.
figure 6.2.
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Figure 6.1 – Possibility distribution of the fuzzy proposition ‘𝒴 is around 21°C’ (left) and corresponding
nested α-cuts of μF ,Y (right)

Figure 6.2 – Possibility function for a parameter uncertain on the interval [4, 6], with maximum value at 5

Given the possibility function in figure 6.2, we can define different α-cut sets AY
α = {y: πY (y) ≥

α}, for 0 ≤ α ≤ 1. For example AY
0.5 = [4.5, 5.5] is the set of y values for which the possibility

function is greater than or equal to 0.5. From the triangular possibility distribution in figure 6.2,
we can conclude that if A expresses that the parameter lies in the interval [4.5, 5.5], then 0.5 ≤
P(A) ≤ 1.

From (6.9) and (6.8) we can deduce the associated cumulative necessity/possibility measures
N (−∞, y) and Π(−∞, y) as shown in figure 6.3. These measures are interpreted as the lower
and upper limiting cumulative probability distributions for the uncertain parameter y .

These bounds can be interpreted as for the interval probabilities: the interval bounds are those
obtained by the analyst as he/she is not able or willing to precisely assign his/her probability —
the interval is the best he/she can do given the information available. However, this makes it
essential to understand what information is in fact represented by the possibility function. It is
referred to [Dubois et al. 1993] and [Flage et al. 2010b, 2013] who transform possibility functions
to probability distributions and vice-versa.

Finally, a possible approximate encoding of a continuous possibility distribution function
πY (y) of a possibilistic variable Y into a bpa proceeds as follows [Baudrit et al. 2006]:

1. determine q (nested) focal elements for Y as the α-cuts; AY
αj = [y

αj
, ̄yαj], j = 1, 2,…, q with

α0 = α1 = 1 > α2 > … > αq > αq+1 = 0.

2. build the mass distribution of the bpa by assigning m(AY
αj) = αj − αj+1 (figure 6.4).

By so doing, we obtain a lower approximation of πY (y); an upper approximation can be dually
obtained.
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Figure 6.4 – Approximate encoding of a possibility distribution into a bpa

6.1.5 A qualitative comparison of possibility and probability theories

As illustrated above, possibility theory is based on a pair of dual measures, possibility and
necessity, which are special versions of belief and plausibility measures from evidence theory.
On the other hand, probability theory is that subarea in which belief and plausibility measures
coincide. This is due to a fundamental difference in the structure of the respective bodies
of evidence: families of nested sets for the possibilistic one; singletons for the probabilistic
one. Different normalization requirements on possibility and probability distributions then
follow: for possibilities, the largest values are required to be 1; for probabilities, their values
are required to add to 1. These differences in mathematical properties make each theory
suitable for modeling certain types of uncertainty.

A fundamental difference between the possibility and probability theories is their repre-
sentation of total ignorance. In possibility theory, as in evidence theory, total ignorance
is represented by the basic probability assignment (5.12) which is equivalent to a unitary
possibility distribution on the entire UOD UY , i.e. πY (y) = 1 ∀y ∈ UY . In probability
theory, total ignorance is represented by a uniform distribution on the entire UOD UY , i.e.
pY (y) = 1

|UY | ∀y ∈ UY . This is derived from the fact that in probability theory uncertainty is
described by a single probability distribution. This approach appeals to Laplace’s principle of
insufficient reason according to which all that is equally plausible is equally probable and is
also justified on the basis of the maximum entropy approach [Gzyl 1995]. It can however be
criticized on the grounds that adopting uniform probabilities to express ignorance implies
that the degrees of probability depend on the size |UY | of the UOD UY and that if no informa-
tion is available to characterize the uncertain situation under study, then no distribution can
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6.2. Uncertainty propagation

be supported: total ignorance should then be expressed in terms of the full set of possible
probability distributions on the UOD UY so that the probability of a value y ∈ UY is allowed
to take any value in [0,1].

As explained above, possibility distributions πY and mass distributions (bpa’s) m encode
probability families and thus allow to represent incomplete probabilistic knowledge. The
intervals [N , Π] induced from πY and [Bel, Pl] induced from m thus provide quantitative
bounds of ill-known probabilities. Coherently, when information regarding some uncertain
variable is given in both probabilistic and possibilistic terms, the two descriptions should be
consistent. The weakest, but most intuitive consistency condition that should be respected is
that an event which is probable to some degree must be possible at least to the same degree,
i.e.,

pY (A) ≤ Π(A) ∀A ∈ P(Y ) (6.18)

The strongest consistency condition would require, on the other hand, that any event with
nonzero probability must be fully possible, i.e.

pY (A) > 0 ⇒ Π(A) = 1 ∀A ∈ P(Y ) (6.19)

The degree of probability/possibility consistency can be measured in terms of the underlying
probability and possibility distributions pY and πY :

c(pY , πY ) = ∑
y∈UY

PY (y)πY (y) (6.20)

In various applications, probability-possibility transformations are necessary, whose consis-
tency must be assured. Several types of transformations exist, ranging from simple ratio
scaling to more sophisticated operations [Klir et Yuan 1995].

6.2 Uncertainty propagation

Referring to the uncertainty propagation task framed in the introduction, let a model whose
output is a function Z = f (Y) = f (Y1, Y2,…, Yj ,…, Yn) of n uncertain variables Yj , j = 1…n,
that are “possibilistic”, i.e., their uncertainty is described by possibility (or fuzzy) distributions
πY1(y1), πY2(y2),…, πYj(yj),…, πYn(yn). In such a case, the propagation of uncertainty in
possibility theory can be performed by Fuzzy Interval Analysis (FIA) [Giles 1982; Kaufmann et
Gupta 1985; Dubois et Prade 1988; Klir et Yuan 1995; Ferson 1994b]. In summary, it can be seen the
convolutions that define fuzzy arithmetic essentially reduce to interval arithmetic repeated
many times, once for each level α of possibility; but, unlike interval analysis, fuzzy arithmetic
yields an entire (possibility) distribution rather than a simple range.

In more detail, the operative steps of the procedure are the following [Klir et Yuan 1995]:

1. set α = 0;

2. select the α-cuts AY1
α ,AY2

α ,…,AYj
α ,…AYn

α of the possibility distributions
πY1(y1), πY2(y2),…, πYj(yj),…, πYn(yn) of the “possibilistic” variables Yj , j = 1…n,

as intervals of possible values ⌊y
j,α
, ̄yj,α⌋ , j = 1…n;

3. calculate the smallest and largest values of Z = f (Y) = f (Y1, Y2,…, Yj ,…, Yn), de-
noted by zα and ̄zα , respectively, letting variables Yj range within the intervals

⌊y
j,α
, ̄yj,α⌋ , j = 1, 2,…, n; in particular, zα = inf

j,Yj∈[y
j,α
, ̄yl,α]

f (Y1, Y2,…, Yj ,…, Yn) and

̄zα = sup
j,Yj∈[y

j,α
, ̄yl,α]

(Y1, Y2,…, Yj ,…, Yn);

4. take the values zα and ̄zα found in step 3. above as the lower and upper limits of the
α-cut AZ

α of Z ;

5. if α < 1, then set α = α + Δα (e.g., Δα = 0.001) and return to step 2. above; otherwise, stop
the algorithm: the possibility distribution πZ(z) of Z = f (Y1, Y2,…, Yn) is constructed as
the collection of the values zα and ̄zα for each α-cut (notice that since Δα = 0.001 then
Nα = (q + 1) = 1

Δα + 1 = 1
0.001 + 1 = 1001 values of α are considered in the procedure, i.e.,
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Nα = 1001 α-cuts of the possibility distributions πY1(y1), πY2(y2),…, πYj(yj),…, πYn(yn)
are selected; thus, the possibility distribution πZ(z) of Z = f (Y1, Y2,…, Yn) is constructed
as the collection of its Nα = (q + 1) = 1/(Δα) + 1 = 1/0.001 + 1 = 1001 α-cut intervals
[zα , ̄zα]).

It is worth noting that performing an interval analysis on α-cuts assumes total dependence
between the epistemically-uncertain parameters. Actually, this procedure implies strong
dependence between the information sources (e.g., the experts or observers) that supply the
input possibility distributions, because the same confidence level (1 - α) is chosen to build the
α-cuts for all the uncertain variables [Baudrit et Dubois 2006].

By way of example, let Y1 be represented by a trapezoidal possibility distribution πY1(y1) with
core [c1, d1] = [3.5, 4] and support [a1, b1] = [3, 5] (figure 6.5, top, left), and Y2 be represented
by a triangular possibility distribution πY2(y2) with core c2 = 6 and support a2, b2] = [3.8, 7]
(figure 6.5, top, right). Figure 6.5, bottom shows the trapezoidal possibility distribution πZ(z)
of the output Z = Y1+Y2 obtained by FIA with Nα = (q+1) = (1/Δα +1) = (1/0.001+1) = 1001
α-cut intervals. For illustration purposes, the α-cuts AY1

0.3 = [3.15, 4.70], AY2
0.3 = [4.46, 6.70] and

AZ
0.3 = [7.61, 11.40] of level α = 0.3 of the possibility distributions πY1(y1), πY2(y2) and πZ(z),

respectively, are indicated by arrows; it is also shown in detail that AZ
0.3 = AY1

0.3 + AY2
0.3 = [3.15,

4.70] + [4.46, 6.70] = [7.61, 11.40].
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Figure 6.5 – Top, left: trapezoidal possibility distribution πY1(y1) for Y1 with core [c1, d1] = [3.5, 4] and
support [a1, b1] = [3, 5]; top, right: triangular possibility distribution πY2(y2) for Y2 with core
c2 = 6 and support [a2, b2] = [3.8, 7]; bottom, left: trapezoidal possibility distribution πZ(z)
of the output Z = Y1 + Y2 obtained by FIA with Nα = (1/Δα + 1) = (1/0.001 + 1) = 1001 α-cut
intervals. The α-cuts AY1

0.3 = [3.15, 4.70], AY2
0.3 = [4.46, 6.70] and AZ

0.3 = [7.61, 11.40] of level α =
0.3 of the possibility distributions πY1(y1), πY2(y2) and πZ(z), respectively, are also indicated
by arrows.
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6.3 Discussion

Based on the considerations and examples above, the advantages of possibility theory
(fuzzy interval analysis) can be summarized as follows [Ferson 1994b, 1999]:

� computations are simple and easy to explain. Because possibility distributions (fuzzy
numbers) have a simple structure, the convolutions that define their arithmetic essentially
reduce to interval arithmetic repeated many times, once for each level of possibility [Baudrit
et Dubois 2006]. But, unlike interval analysis, fuzzy arithmetic yields an entire distribution
rather than a simple range;

� possibility distributions (fuzzy numbers) can be assigned subjectively;

� possibility theory does not require detailed empirical information;

� possibility theory works with non-statistical (i.e., non-probabilistic) uncertainty; thus, it
is applicable to all kinds of uncertainty;

� possibility theory needs fewer arbitrary (and often unjustified) assumptions than proba-
bility theory;

� possibility distributions (fuzzy numbers) are a generalization and refinement of intervals
in which the bounds vary according to the level of confidence one has in the estimation;

� possibility theory is intermediate in conservatism between analogous Monte Carlo and
interval approaches. Actually, it allows analysts to construct a much more highly re-
solved picture of risks of various magnitudes than interval analysis does, but it does so
without being as information-intensive (or assumption-intensive) as Monte Carlo meth-
ods generally have to be. An often cited example of how probability theory, possibility
theory and interval analysis differ compares the sums of uniform distributions (figure 6.6).
When two uniform probability distributions pY (y) = U [0, 1) (figure 6.6, top, left) are
added together under the assumption of independence, the resulting sum Z = (Y + Y )
is distributed according to a triangular distribution pZ=Y+Y (z) = TR(0, 1, 2) (figure 6.6,
middle, left). In the limit, the sum Z = Y + Y + … + Y tends to a normal distribution
(with a very small coefficient of variation) (figure 6.6, bottom, left shows the probability
distribution pZ=Y+Y+…+Y (z) of the sum Z = Y + Y + … + Y of ten uniform probability
distributions pY (y) = U [0, 1)). When two analogous flat fuzzy numbers (i.e., intervals)
are added together (solid line in figure 6.6, top, right), the result is another flat distribution
(solid line in figure 6.6, middle, right), and in the limit, still a flat distribution (solid
line in figure 6.6, bottom, right). The big difference here is that fuzzy arithmetic is not
assuming independence between the variables. Of course, when the input distributions
are not flat (e.g., see dashed line in figure 6.6, top, right), the answer coming out of fuzzy
arithmetic will not be either, but the distribution will be broader than that predicted by
the comparable probabilistic method (e.g., compare the solid line in figure 6.6, bottom,
left with the dashed line in figure 6.6, bottom, right). However, it won’t be as broad or
hyper-conservative as the analogous interval analysis approach (e.g., compare the solid
and dashed lines in figure 6.6, bottom, right);

� possibility distributions (fuzzy numbers) maintains conservatism under uncertainty about
dependencies among variables;

� although fairly simple, possibility distributions (fuzzy numbers) are very robust represen-
tations when empirical information is very sparse. In other words, there is only weak
sensitivity of the final results to details of the shapes of the input possibility distributions.
Many analysts consider this an important advantage because there is often so little de-
pendable empirical information underlying the selection of one input distribution over
many alternatives.

On the contrary, the disadvantages of possibility theory (fuzzy interval analysis) can be
summarized as follows [Ferson 1994b, 1999]:

� it is not yet widely known and applied so that it has not been broadly accepted in the risk
assessment community. Much effort has beenmade in this area, oftenwith amathematical
orientation, but no convincing framework for risk assessment in practice presently exists
based on these alternative theories. Further research is required to make these alternatives
operational in a risk assessment context;
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� it may be overly conservative;

� repeated parameters may represent a computational problem (as for interval analysis);

� it is not clear if it is correct to merge numbers whose conservatisms are different ; in other
words, are alpha levels comparable for different variables?

� in the uncertainty propagation by fuzzy interval analysis, it implicitly assumes total (i.e.,
perfect) dependence between the uncertain variables.
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Figure 6.6 – Top, left: uniform probability distributions pY (y) = U [0, 1) for uncertain variable Y ; top,
right: interval [0, 1] (solid line) and triangular possibility distribution πX(x) = TR(0, 0.5, 1)
(dashed line) for uncertain variable X ; middle, left: triangular probability distribution pZ(z) =
TR(0, 1, 2) for Z = Y + Y ; middle, right: interval [0, 2] (solid line) and triangular possibility
distribution πZ(z) = TR(0, 1, 2) (dashed line) for Z = X + X ; bottom, left: probability
distribution pZ(z) for Z = ∑10

i=1 YiYi ∼ U [0, 1); bottom, right: interval [0, 10] (solid line) and
triangular possibility distribution πZ(z) = TR(0, 5, 10) (dashed line) for Z = ∑10

i= Xi ,Xi ∼
πXi(xi) = TR(0, 0.5, 1)

Finally, it is worth noting that important work has also been carried out to combine different
approaches, for example probabilistic analysis and possibility theory. Here the uncertainties
of some parameters are represented by probability distributions and those of some other
parameters by means of possibilistic distributions. An integrated computational framework
has been proposed for jointly propagating the probabilistic and possibilistic uncertainties
[Baudrit et Dubois 2005, 2006; Baudrit et al. 2007a,b, 2008; Cooper et al. 1996; Guyonnet et al. 2003;
Kentel et Aral 2004, 2005, 2007; Möller 2004; Möller et Beer 2004, 2008; Möller et al. 2003, 2006].
This framework has previously been tailored to event tree analysis [Baraldi et Zio 2008] and
fault tree analysis [Flage et al. 2010a], allowing for the uncertainties about event probabilities
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(chances) to be represented and propagated using both probability and possibility distributions.
The work has been extended in [Flage et al. 2010b, 2013] by comparing the results of the hybrid
approach with those obtained by purely probabilistic and possibilistic approaches, using
different probability/possibility transformations.

39





7

Concerns for practical decision-making

From the front end of the analysis, the representation of the knowledge available as input to
the risk assessment in support of the decision-making must be faithful and transparent: the
methods and models used should not add information that is not there, nor ignore information
that is there. In high-consequence technologies, one deals with rare events and processes for
which experimental and field data are lacking or scarce, at best; then it is essential that the
related information and knowledge are elicited and treated in an adequate way. Two concerns
then need to be balanced:

C1 the knowledge should to the extent possible be “inter-subjective” in the sense that the
representation corresponds to documented and approved information and knowledge;

C2 the analysts’ judgments (‘degrees of belief’) should be clearly reflected.

The former concern makes the pure Bayesian approach difficult to apply: introducing analysts’
subjective probability distributions is unjustifiable since this leads to building a structure in
the probabilistic analysis that is not present in the “approved” expert-provided information.
For example, if an expert states his or her uncertainty assessment on a parameter value in
terms of a range of possible values, this does not justify the allocation of a specific distribution
function (for example the uniform distribution) onto the range. In this view, it might be said
that a more defense-in-depth (bounding) representation of the information and knowledge
available would be one which leaves the analysis open to all possible probability distribution
structures on the assessed range, without imposing one in particular and without excluding
any, thus providing results which bound all possible distributions.

On the other hand, the representation framework should also take into account the concern
C2 , i.e. allow for the transparent inclusion of preferential assignments by the experts
(analysts) who wish to express that some values are more or less likely than others. The
Bayesian approach is the proper framework for such assignments.

From the point of view of the quantitative modeling of uncertainty in risk assessment, two
topical issues are the proper handling of dependencies among uncertain parameters, and of
model uncertainties. No matter what modeling paradigm is adopted, it is critical that the
meaning of the various concepts be clarified. Without such clarifications it is impossible
to build a scientific-based risk assessment. In complex situations, when the propagation is
based on many parameters, strong assumptions may be required to be able to carry out the
analysis. The analysts may acknowledge a degree of dependency, but the analysis may not
be able to describe it in an adequate way. The derived uncertainty representations must be
understood and communicated as measures conditional on this constraint. In practice, it is
a main task of the analysts to seek simple representations of the system performance and
by “smart” modelling it is often possible to “obtain” independence. The models used are also
included in the background knowledge of epistemic-based uncertainty representations. We
seek accurate models, but at the same time simple models. The choice of the right model
cannot be seen in isolation from the purpose of the risk assessments.

From the back-end of the analysis, i.e. the use of its outcomes for practical decision-making, it
is fundamental that the meaning and practical interpretation of the quantities computed are
communicated in an understandable format to the decision-makers. The format must allow
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for meaningful comparisons with numerical safety criteria if defined, for manipulation (e.g.
by screening, bounding and/or sensitivity analyses) and for transformation in deliberation
processes.

The context of risk and uncertainty assessments must be seen within and for decision-making.
There are in fact also different perspectives on how to use risk and uncertainty assessments for
decision-making. Strict adherence to expected utility theory, cost-benefit analysis and related
theories would mean clear recommendations on what is the optimal arrangement or measure.
However, most practical oriented analysts would see risk and uncertainty assessments as
decision support tools, in the sense that the assessments inform the decision-makers. The
decision-making is risk-informed, not risk-based [Apostolakis 2004]. In general, there is a
significant leap from the decision-making basis to the decision. What this leap (often referred
to as managerial review and judgment) comprises is a subject being discussed in the literature
(e.g. [Aven 2010a]) and it is also closely linked to the present work. The scope and boundaries
of risk and uncertainty assessments define to a large extent the content of this review and
judgment. A narrow risk and uncertainty characterization calls for a broader managerial
review and judgment, and vice versa.

Seeing risk assessment as an aid for decision-making, alternative approaches for the represen-
tation and treatment of uncertainties in risk assessment are required. Different approaches
provide a broader and more informative decision basis than one approach alone. A Bayesian
analysis without thorough considerations of the background knowledge and associated as-
sumptions would normally fail to reveal important uncertainty factors. Such considerations
(qualitative assessments) are essential for ensuring that the decision-makers are not seriously
misled by the risk assessment results.

It is a huge step from such assessments to methods that quantitatively express, and bound,
the imprecision in the probability assignments. These methods are also based on a set of
premises and assumptions, but not to the same degree as the pure probability-based analyses.
Their motivation is that the intervals produced correspond better to the information available.
For example, an analysis (e.g., based on possibility theory) results in an interval [a, b] for the
subjective probability P(A) of event A. The analysts are not able or willing to precisely assign
their probability P(A). The decision-maker may however request that the analysts make such
assignments — the decision-maker would like to be informed by the analysts’ degree of belief
(refer to concern C2 above). The analysts are consulted as experts in the field studied and
the decision-maker expects them to give their faithful report of the epistemic uncertainties
about the unknown quantities addressed. The decision-maker knows that these judgments
are based on some knowledge and some assumptions, and are subjective in the sense that
others could conclude differently, but these judgments are still considered valuable as the
analysts (and the experts they use in the analysis) have competence in the field being studied.
The analysts are trained in probability assignments and the decision-maker expects that the
analysts are able to transform their knowledge into probability figures [Aven 2010b].

Following this view, we should continue to conduct probability–based analysis reflecting the
analysts’ degree of belief about unknown quantities, but we should also encourage additional
assessments. These include sensitivity analyses to see how sensitive the risk indices are with
respect to changes in basic input quantities, for example assumptions and suppositions [Helton
et al. 2006; Cacuci et Ionescu-Bujor 2004; Saltelli et al. 2008; Frey et Patil 2002], but also crude
qualitative assessments of uncertainty factors, as mentioned above. The use of imprecision
intervals would further point at the importance of key assumptions made.
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Discussion and conclusions

Nowadays, the use of risk assessment as a tool in support of decision-making is quite
widespread, particularly in high-consequence technologies. The techniques of analysis sustain-
ing the assessment must be capable of building the level of confidence in the results required
for taking the decision they inform. A systematic and rational control on the uncertainty
affecting the analysis is the key to confidence building.

In practical risk assessments, the uncertainty is commonly treated by probabilistic methods,
in their Bayesian, subjective formulation for the treatment of rare events and poorly known
processes typical of high-consequence technologies. However, a number of theoretical and
practical challenges seem to be still somewhat open. This has sparked the emergence of a
number of alternative approaches, which have been here considered in relation to the support
to decision-making that they can provide.

Many researchers and analysts are skeptical of the use of “non-probabilistic” approaches (such
as described in chapters 3 to 6) for the representation and treatment of uncertainty in risk
assessment for decision-making. An imprecise probability result is considered to provide
a more complicated representation of uncertainty [Lindley 2000]. By an argument that the
simple should be favoured over the complicated, [Lindley 2000] takes the position that the
complication of imprecise probabilities seems unnecessary. In a more rejecting statement,
[Lindley 2006] argues that the use of interval probabilities goes against the idea of simplicity, as
well as confuses the concept of measurement (interpretation, in the view of [Bedford et Cooke
2001]) with the practice of measurement (measurement procedures in the view of [Bedford et
Cooke 2001]). The standard, [Lindley 2006] emphasizes, is a conceptual comparison. It provides
a norm, and measurement problems may make the assessor unable to behave according to
it. [Bernardo et Smith 2000, p. 32] call the idea of a formal incorporation of imprecision into
the axiom system “an unnecessary confusion of the prescriptive and the descriptive” for many
applications, and point out that measurement imprecision occurs in any scientific discourse
in which measurements are taken. They make a parallel to the inherent limits of a physical
measuring instrument, where it may only be possible to conclude that a reading is in the range
3.126 to 3.135, say. Then, we would typically report the value 3.13 and proceed as if this were
the precise number:

‘‘ We formulate the theory on the prescriptive assumption that we aspire to exact measurement […],
whilst acknowledging that, in practice, we have to make do with the best level of precision currently
available (or devote some resources to improving our measuring instruments!) [Bernardo et Smith
2000, p. 32]

Many analysts argue fiercely for a strict Bayesian analysis. A typical statement is [North 2010]:

‘‘ For me, the introduction of alternatives such as interval analysis to standard probability theory
seems a step in the wrong direction, and I am not yet persuaded it is a useful area even for theoretical
research. I believe risk analysts will be better off using standard probability theory than trying out
alternatives that are harder to understand, and which will not be logically consistent if they are not
equivalent to standard probability theory.

However, as argued in this document, this approach does not solve the problems raised. The
decision basis cannot be restricted to subjective probabilities: there is a need to go beyond the
Bayesian approach.
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In the end, any method of uncertainty representation and analysis in risk assessment must
address a number of very practical questions before being applicable in support to decision-
making:

� How completely and faithfully does it represent the knowledge and information available?

� How costly is the analysis?

� How much confidence does the decision-maker gain from the analysis and the presenta-
tion of the results? (This opens up the issue of how one can measure such confidence).

� What value does it bring to the dynamics of the deliberation process?

Any method which intends to complement, or in some justified cases supplement, the com-
monly adopted probabilistic approach to risk assessment should demonstrate that the efforts
needed for the implementation and familiarization, by the analysts and decision-makers, are
feasible and acceptable in view of the benefits gained in terms of the above questions and,
eventually, of the confidence in the decision made.
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